×

zbMATH — the first resource for mathematics

On seminormality. (English) Zbl 0473.13001

MSC:
13B30 Rings of fractions and localization for commutative rings
14C22 Picard groups
13A10 Radical theory on commutative rings (MSC2000)
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bass, H., Torsion free and projective modules, Trans. amer. math. soc., 102, 319-327, (1962) · Zbl 0103.02304
[2] Bass, H., AlgebraicK-theory, (1968), Benjamin New York · Zbl 0174.30302
[3] Bass, H.; Murthy, M. Pavaman, Grothendieck groups and Picard groups of abelian group rings, Ann. of math., 86, 16-73, (1967) · Zbl 0157.08202
[4] Brewer, J.W.; Costa, D.L., Seminormality and projective modules over polynomial rings, J. algebra, 58, 208-216, (1979) · Zbl 0446.13005
[5] Brewer, J.W.; Costa, D.L.; McCrimmon, K., Seminormality and root closure in polynomial rings and algebraic curves, J. algebra, 58, 217-226, (1979) · Zbl 0446.13004
[6] Endo, S., Projective modules over polynomial rings, J. math. soc. Japan, 15, 339-352, (1963) · Zbl 0119.03504
[7] Gersten, S.M., Problems about higherK-functors, (), 43-56 · Zbl 0285.18011
[8] {\scR. Gilmer and R. Heitmann}, On Pic R[X] for R seminormal, to appear. · Zbl 0428.13003
[9] Hamann, E., TheR-invariance of R[X], J. algebra, 35, 1-16, (1975) · Zbl 0318.13023
[10] Hartshorne, R., Algebraic geometry, (1977), Springer-Verlag Berlin · Zbl 0367.14001
[11] Hochster, M., Topics in the homological theory of modules over commutative rings, () · Zbl 0302.13003
[12] Ischebeck, F., Zwei bemerkungenu¬®ber seminormale ringe, Math. Z., 152, 101-106, (1977) · Zbl 0343.13007
[13] Kaplansky, I., Fields and rings, (1972), Univ. of Chicago Press Chicago · Zbl 1001.16500
[14] Matsumura, H., Commutative algebra, (1970), Benjamin New York · Zbl 0211.06501
[15] Milnor, J., Introduction to algebraicK-theory, () · Zbl 0237.18005
[16] Quillen, D., Projective modules over polynomial rings, Invent. math., 36, 167-171, (1976) · Zbl 0337.13011
[17] {\scD. E. Rush}, Seminormality, to appear.
[18] Swan, R.G., AlgebraicK-theory, () · Zbl 0193.34601
[19] Traverso, C., Seminormality and Picard group, Ann. scuola norm. sup. Pisa, 24, 585-595, (1970) · Zbl 0205.50501
[20] {\scC. Weibel},K-theory and analytic isomorphisms, to appear. · Zbl 0437.13009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.