×

zbMATH — the first resource for mathematics

Analyticity of the semigroup generated by the Stokes operator in \(L_r\) spaces. (English) Zbl 0473.35064

MSC:
35Q30 Navier-Stokes equations
35J55 Systems of elliptic equations, boundary value problems (MSC2000)
47D03 Groups and semigroups of linear operators
35S15 Boundary value problems for PDEs with pseudodifferential operators
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bemelmans, J.: Eine Außenraumaufgabe für die instationären Navier-Stokes-Gleichungen. Math. Z.162, 145-173 (1978) · Zbl 0379.35053 · doi:10.1007/BF01215072
[2] Boutet de Monvel, L.: Pseudo-noyaux de Poisson et opérateur pseudo-differentiels sur une variété à bord. C.R. Acad. Sci. Paris Sér A261, 3927-3930 (1965) · Zbl 0171.35102
[3] Calderón, A.P.: Intermediate spaces and interpolations, the complex method. Studia Math.24, 113-190 (1964) · Zbl 0204.13703
[4] Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova31, 308-340 (1961) · Zbl 0116.18002
[5] Fabes, E.B., Lewis, J.E., Riviere, N.M.: Boundary value problems for the Navier-Stokes equations. Amer. J. Math.99, 628-668 (1977) · Zbl 0386.35037
[6] Friedrichs, K.O.: Pseudo-differential operators, an introduction. Lecture Notes. New York: Courant Inst. Math. Sci. 1968
[7] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Rational Mech. Anal.16, 269-315 (1964) · Zbl 0126.42301 · doi:10.1007/BF00276188
[8] Fujiwara, D.: On a special class of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo Sect. IA Math.14, 221-249 (1967) · Zbl 0157.16902
[9] Fujiwara, D., Morimoto, H.: AnL r -theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math.24, 685-700 (1977) · Zbl 0386.35038
[10] Geymonat, G.: Sui problem ai limiti per i sistemi lineari ellittici. Ann. Mat. Pura Appl. (4)69, 207-284 (1965) · Zbl 0152.11102 · doi:10.1007/BF02414374
[11] Giga, Y.: The Stokes operator inL r , spaces. Proc. Japan Acad.57, 85-89 (1981) · Zbl 0471.35069 · doi:10.3792/pjaa.57.85
[12] Hörmander, L.: Pseudo-differential operators. Comm. Pure Appl. Math.18, 501-517 (1965) · Zbl 0125.33401 · doi:10.1002/cpa.3160180307
[13] Hörmander, L.: Pseudo-differential operators and non-elliptic boundary value problems. Ann. of Math. (2)83, 129-209 (1966) · Zbl 0132.07402 · doi:10.2307/1970473
[14] Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. In: singular integrals, pp. 138-183. Proceedings of Symposia in Pure Mathematics,10. Providence, R.I.: American Mathematical Society 1967 · Zbl 0167.09603
[15] Kagan, V.M.: Boundedness of pseudo-differential operators inL p . Izv. Vys?. U?ebn. Zaved. Matematika73, 35-44 (1968) [Russian]
[16] Kato, T., Fujita, H.: On the nonstationary Navier-Stokes system. Rend. Sem. Mat. Univ. Padova32, 243-260 (1962) · Zbl 0114.05002
[17] Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Comm. Pure Appl. Math.18, 269-305 (1965) · Zbl 0171.35101 · doi:10.1002/cpa.3160180121
[18] Kumano-go, H.: Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo Sect. IA Math.17, 31-50 (1970) · Zbl 0206.10501
[19] Kumano-go, H., Nagase, M.:L p -theory of pseudo-differential operators. Proc. Japan Acad.46, 138-142 (1970) · Zbl 0206.10404 · doi:10.3792/pja/1195520457
[20] Kumano-go, H., Nagase, M.: Pseudo-differential operators with non-regular symbols and applications. Funkcial. Ekvac.21, 151-192 (1978) · Zbl 0395.35089
[21] Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Revised English edn. New York-London: Gordon and Breach 1969 · Zbl 0184.52603
[22] Lions, J.L., Magenes, E.: Problemi ai limiti non omogenei (III). Ann. Scoula Norm. Sup. Pisa15, 41-103 (1961)
[23] Lions, J.L., Magenes, E.: Problemi ai limiti non omogenei (V). Ann. Scoula Norm. Sup. Pisa Sci. Tis-Mat.16, 1-44 (1962) · Zbl 0115.31401
[24] McCracken, M.: The Stokes equations inL p . Thesis. University of California, Berkeley
[25] Mihlin, S.G.: Multidimensional singular integrals and integral equations. First English edn. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1965
[26] Miyakawa, T.: TheL p approach to the Navier-Stokes equations with the Neumann boundary condition. Hiroshima Math. J.10, 517-537 (1980) · Zbl 0455.35099
[27] Miyakawa, T.: On the initial value problem for the Navier-Stokes equations inL p spaces. Hiroshima Math. J.11, 9-20 (1981) · Zbl 0457.35073
[28] Odqvist, F.K.G.: Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math. Z.32, 329-375 (1930) · JFM 56.0713.04 · doi:10.1007/BF01194638
[29] Seeley, R.: Topics in pseudo-differential operators. In: pseudo-differential operators (C.I.M.E., Stresa 1968), pp. 169-305. Roma: Edizioni Cremonese 1969
[30] Seeley, R.: The resolvent of an elliptic boundary problem. Amer. J. Math.92, 889-920 (1970) · Zbl 0191.11801
[31] Sobolevskii, P.E.: Study of Navier-Stokes equations by the methods of the theory of parabolic equations in Banach spaces. Dokl. Akad. Nauk SSSR 156, 745-748 (1964) (russian). Engl. Transl.: Soviet Math. Dokl.5, 720-723 (1964) · Zbl 0201.18301
[32] Solonnikov, V.A.: On estimates of Green’s tensors for certain boundary problems. Dokl. Acad. Nauk SSSR 29, 988-991 (1960) (russian). Engl. Transl.: Soviet Math. Dokl.1, 128-131 (1960) · Zbl 0097.30404
[33] Solonnikov, V.A.: General boundary value problems for Douglis-Nirenberg elliptic systems II. Trudy Math. Inst. Steklov 92, 233-297 (1966) (russian). Engl. Transl.: Proc. Steklov Inst. Math.92, 269-339 (1966) · Zbl 0168.36701
[34] Solonnikov, V.A.: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet. Math.8, 467-529 (1977) · Zbl 0404.35081 · doi:10.1007/BF01084616
[35] Temam, R.: Navier-Stokes equations. Amsterdam-New York-Oxford: North Holland 1977 · Zbl 0383.35057
[36] Vainberg, B.R., Grushin, V.V.:, Uniformly nonelliptic problems II. Math. USSR Sb.2, 111-133 (1967) · doi:10.1070/SM1967v002n01ABEH002327
[37] Wahl, W. von: Regularity questions for the Navier-Stokes equations. In: approximation methods for Navier-Stokes problems. Proceedings of a Symposium (Paderborn 1979), pp. 538-542. Lecture Notes in Mathematics771. Berlin-Heidelberg-New York: Springer 1980
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.