×

zbMATH — the first resource for mathematics

Dilation analyticity in constant electric field. II: N-body problem, Borel summability. (English) Zbl 0473.47038

MSC:
47F05 General theory of partial differential operators
35J10 Schrödinger operator, Schrödinger equation
81Q15 Perturbation theories for operators and differential equations in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S.: Proc. Int. Conf. on Funct. Anal. Rel. Topics. Tokyo 1969
[2] Aguilar, J., Combes, J.M.: Commun. Math. Phys.22, 269 (1971) · Zbl 0219.47011
[3] Avron, J., Herbst, I.: Commun. Math. Phys.52, 239 (1977) · Zbl 0351.47007
[4] Avron, J., Herbst, I., Simon, B.: Duke Math. J.45, 847 (1978) · Zbl 0399.35029
[5] Avron, J., Herbst, I., Simon, B.: Ann. Phys. (Paris)114, 431 (1978) · Zbl 0409.35027
[6] Avron, J., Herbst, I., Simon, B.: Commun. Math. Phys. (in press)
[7] Balslev, E.: Arch. Rat. Mech. Anal.59, 343 (1975) · Zbl 0325.35028
[8] Balslev, E., Combes, J.M.: Commun. Math. Phys.22, 280 (1971) · Zbl 0219.47005
[9] Combes, J.M., Thomas, L.: Commun. Math. Phys.34, 251 (1973) · Zbl 0271.35062
[10] Deift, P., Hunziker, W., Simon, B., Vock, E.: Commun. Math. Phys.64, 1 (1978) · Zbl 0419.35079
[11] Enss, V.: Commun. Math. Phys.52, 233 (1977)
[12] Faris, W., Lavine, R.: Commun. Math. Phys.35, 39 (1974) · Zbl 0287.47004
[13] Graffi, S., Grecchi, V.: Commun. Math. Phys.62, 83 (1978)
[14] Hardy, G.: Divergent series. Oxford: Oxford University Press 1949 · Zbl 0032.05801
[15] Harrell, E., Simon, B.: Duke Math. J.47, 845 (1980) · Zbl 0455.35091
[16] Herbst, I.: Commun. Math. Phys.64, 279 (1979) · Zbl 0447.47028
[17] Herbst, I., Simon, B.: Phys. Rev. Lett.41, 67 (1978)
[18] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[19] Morgan, J., Simon, B.: Int. J. Quantum Chem (to appear)
[20] Nevanlinna, F.: Ann. Acad. Sci. Fenn. Ser. A12, No. 3 (1918-1919)
[21] O’Connor, A.: Commun. Math. Phys.32, 319 (1973)
[22] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. London, New York: Academic Press 1972 · Zbl 0308.47002
[23] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. London, New York: Academic Press 1978 · Zbl 0401.47001
[24] Reinhardt, W.: Int. J. Quantum Chem. Symp.10, 359 (1976)
[25] Simon, B.: Math. Ann.207, 133 (1974) · Zbl 0264.35025
[26] Simon, B: Trans. Am. Math. Soc.208, 317 (1975)
[27] Simon, B.: Commun. Math. Phys.55, 259 (1977) · Zbl 0413.47008
[28] Simon, B.: Duke Math. J.46, 119 (1979) · Zbl 0402.35076
[29] Sobolevski, P.E.: Tr. Mosk. Math.10, 297 (1961)
[30] Sokal, A.: J. Math. Phys. (N.Y.)21, 261 (1980) · Zbl 0441.40012
[31] Tanabe, H.: Osaka Math. J.12, 365 (1960)
[32] Titchmarsh, E.C.: Eigenfunction expansions associated with second order differential equations. Oxford: Oxford University Press 1958 · Zbl 0097.27601
[33] van Winter, C.: Math. Fys. Skr. Dan. Vid. Selsk.1, 1 (1964)
[34] Watson, G.: Philos. Trans. R. Soc. (London) A211, 279 (1912)
[35] Weinberg, S.: Phys. Rev.133, 232 (1964)
[36] Yosida, K.: Functional analysis. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0217.16001
[37] Graffi, S., Grecchi, V.: Commun. Math. Phys (in press)
[38] Hunziker, W.: Helv. Phys. Acta39, 451-462 (1966)
[39] Herbst, I.: J. Opt. Th. (in press)
[40] Gearhart, L.: Trans. Am. Math. Soc.236, 365 (1978)
[41] Herbst, I.: J. Math. Phys. (N.Y.)17, 1210 (1976)
[42] Lavine, R.: Private communication
[43] Herbst, I.: Proc. of Int. School of Math. Phys., Erice, 1980 (to appear)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.