zbMATH — the first resource for mathematics

A computational method for the indefinite quadratic programming problem. (English) Zbl 0473.65036

65K05 Numerical mathematical programming methods
90C20 Quadratic programming
Full Text: DOI
[1] Aasen, J.O., On the reduction of a symmetric matrix to tridiagonal form, Nordisk tidskr. informationsbehandling (BIT), 11, 233-242, (1971) · Zbl 0242.65032
[2] Bunch, J.R., Analysis of the diagonal pivoting method, SIAM J. numer. anal., 8, 656-680, (1971)
[3] Bunch, J.R.; Kaufman, L., Some stable methods for calculating inertia and solving symmetric linear systems, Math. comp., 31, 163-179, (1977) · Zbl 0355.65023
[4] Bunch, J.R.; Parlett, B.N., Direct methods for solving symmetric indefinite systems of linear equations, SIAM J. numer. anal., 8, 639-655, (1971) · Zbl 0199.49802
[5] Fletcher, R., The calculation of feasible points for linearly constrained optimization problems, U.K. atomic energy authority report R6354, (1971)
[6] Himmelblau, D.M., Applied nonlinear programming, (1972), McGraw-Hill · Zbl 0521.93057
[7] Gill, P.E.; Golub, G.H.; Murray, W.; Saunders, M.A., Methods for modifying matrix factorizations, Math. comp., 28, 505-535, (1974) · Zbl 0289.65021
[8] Gill, P.E.; Murray, W., Numerical methods for constrained optimization, (1974), Academic
[9] Gill, P.E.; Murray, W., Numerically stable methods for quadratic programming, Math. programming, 14, 349-372, (1978) · Zbl 0374.90054
[10] Lawson, C.L.; Hanson, R.J., Solving least squares problems, (1974), Prentice-Hall Englewood Cliffs, N.J · Zbl 0185.40701
[11] Luenberger, D.L., Introduction to linear and nonlinear programming, (1973), Addison-Wesley
[12] Mirsky, L., An introduction to linear algebra, (1975), Clarendon Press Oxford · Zbl 0766.15001
[13] Murray, W., An algorithm for finding a local minimum of an indefinite quadratic program, Nat. phys. lab. rept. NAC1, (1971)
[14] Stewart, G.W., Introduction to matrix computations, (1973), Academic · Zbl 0302.65021
[15] Fletcher, R.; Freeman, T.L., A modified Newton method for minimization, J. optimization theory appl., 3, 357-372, (1977) · Zbl 0348.65058
[16] Sorensen, D.C., Updating the symmetric indefinite factorization with applications in a modified Newton’s method, Argonne nat. lab. report ANL-77-49, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.