zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Effects of convective and dispersive interactions on the stability of two species. (English) Zbl 0473.92016

92D25Population dynamics (general)
35B35Stability of solutions of PDE
35B30Dependence of solutions of PDE on initial and boundary data, parameters
Full Text: DOI
[1] Comins, H. N. and D. W. E. Blatt. 1974. ”Prey-Predator Models in a Spatially Heterogeneous Environment.”J. Theor. Biol. 48, 75--83. · doi:10.1016/0022-5193(74)90180-5
[2] Dubois, D. M. 1975. ”A Model of Patchiness for Prey-Predator Plankton Populations.”Ecol. Modelling 1, 67--80. · doi:10.1016/0304-3800(75)90006-X
[3] Gomatam, J. 1974. ”A New Model for Interacting Populations 1.”Bull. Math. Biol. 36, 347--353. · Zbl 0285.92023
[4] Gopalsamy, K. 1977. ”Competition, Dispersion and Coexistence.”Math. Biosci. 33, 25--33. · Zbl 0354.92032 · doi:10.1016/0025-5564(77)90061-X
[5] Gurney, W. S. C. and R. M. Nisbet. 1975. ”A Note on Nonlinear Population Transport.”J. Theor. Biol. 56, 249--251. · doi:10.1016/S0022-5193(76)80056-2
[6] Hadeler, K. P., V. Heiden and F. Rothe. 1974. ”Nonhomogeneous Spatial Distributions of Populations.”J. Math. Biol. 1, 165--176. · Zbl 0315.92012 · doi:10.1007/BF00275801
[7] Huffaker, C. B. 1958. ”Experimental Studies on Predation; Dispersion Factors and Prey-Predator Oscillations.”Hilgardia 27, 305--329. · doi:10.3733/hilg.v27n14p343
[8] --. 1963. ”Experimental Studies on Predation: Complex Dispersion and Levels of Food in an Acarine Predator-Prey Interactions.”Hilgardia 37, 305--309. · doi:10.3733/hilg.v34n09p305
[9] Jorne, J. 1974. ”The Effects of Ionic Migration on Oscillations and Pattern Formation in Chemical Systems.”J. Theor. Biol. 43, 375--380. · doi:10.1016/S0022-5193(74)80067-6
[10] --. 1975. ”Negative Ionic Cross Diffusion Coefficients in Electrolytic Solutions.”J. Theor. Biol. 55, 529. · doi:10.1016/S0022-5193(75)80099-3
[11] Kerner, E. H. 1959. ”Further Considerations on Statistical Mechanics of Biological Associations.”Bull. Math. Biophys. 21, 217--255. · doi:10.1007/BF02476361
[12] Landahl, H. D. 1959. ”A Note on the Population Growth under Random Dispersal.”Bull. Math. Biophys. 21, 153--159. · doi:10.1007/BF02476357
[13] Levin, S. A. 1974. ”Dispersion and Population Interactions.”Am. Nat. 108, 207--228. · doi:10.1086/282900
[14] Levins, R. and D. Culver. 1971. ”Regional Coexistence of Species and Competition Between Rare Species.”Proc. Nat. Acad. Sci. 68, 1246--1248. · Zbl 0217.57702 · doi:10.1073/pnas.68.6.1246
[15] McMurtrie, R. E. 1978. ”Persistence and Stability of Single Species and Prey-Predator Systems in Spatially Heterogeneous Environment.”Mathl. Biosci. 39, 11--51. · Zbl 0384.92011 · doi:10.1016/0025-5564(78)90026-3
[16] Maynard Smith, J. 1974.Models in Ecology. Cambridge: Cambridge University Press.
[17] Rosen, G. 1977a. ”Effects of Diffusion on the Stability of the Equilibrium in Multispecies Ecological Systems.”Bull. Math. Biol. 39, 373--383. · Zbl 0354.92013 · doi:10.1007/BF02462916
[18] -- 1977b. ”On the Persistence of Ecological Systems.”J. Theor. Biol. 65, 795--799. · doi:10.1016/0022-5193(77)90027-3
[19] Segal, L. A. and J. L. Jackson. 1972. ”Dispersive Structure: An Explanation and an Ecological Example.”J. Theor. Biol. 37, 545--559. · doi:10.1016/0022-5193(72)90090-2
[20] Skellam, J. G. 1951. ”Random Dispersal in Theoretical Population.”Biometrika 38, 196--218. · Zbl 0043.14401 · doi:10.1093/biomet/38.1-2.196
[21] Smith, E. F. 1972. ”Spatial Heterogeneity, Stability, and Density in Ecosystems.” InGrowth by Intussusception: Ecological Essays in Honor of G. Evelynn Hutchinson; Trans. Conn. Acad. Astrol. Sci. 44, 309--335.