×

Effects of convective and dispersive interactions on the stability of two species. (English) Zbl 0473.92016


MSC:

92D25 Population dynamics (general)
35B35 Stability in context of PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Comins, H. N. and D. W. E. Blatt. 1974. ”Prey-Predator Models in a Spatially Heterogeneous Environment.”J. Theor. Biol. 48, 75–83.
[2] Dubois, D. M. 1975. ”A Model of Patchiness for Prey-Predator Plankton Populations.”Ecol. Modelling 1, 67–80.
[3] Gomatam, J. 1974. ”A New Model for Interacting Populations 1.”Bull. Math. Biol. 36, 347–353. · Zbl 0285.92023
[4] Gopalsamy, K. 1977. ”Competition, Dispersion and Coexistence.”Math. Biosci. 33, 25–33. · Zbl 0354.92032
[5] Gurney, W. S. C. and R. M. Nisbet. 1975. ”A Note on Nonlinear Population Transport.”J. Theor. Biol. 56, 249–251.
[6] Hadeler, K. P., V. Heiden and F. Rothe. 1974. ”Nonhomogeneous Spatial Distributions of Populations.”J. Math. Biol. 1, 165–176. · Zbl 0315.92012
[7] Huffaker, C. B. 1958. ”Experimental Studies on Predation; Dispersion Factors and Prey-Predator Oscillations.”Hilgardia 27, 305–329.
[8] –. 1963. ”Experimental Studies on Predation: Complex Dispersion and Levels of Food in an Acarine Predator-Prey Interactions.”Hilgardia 37, 305–309.
[9] Jorne, J. 1974. ”The Effects of Ionic Migration on Oscillations and Pattern Formation in Chemical Systems.”J. Theor. Biol. 43, 375–380.
[10] –. 1975. ”Negative Ionic Cross Diffusion Coefficients in Electrolytic Solutions.”J. Theor. Biol. 55, 529.
[11] Kerner, E. H. 1959. ”Further Considerations on Statistical Mechanics of Biological Associations.”Bull. Math. Biophys. 21, 217–255.
[12] Landahl, H. D. 1959. ”A Note on the Population Growth under Random Dispersal.”Bull. Math. Biophys. 21, 153–159.
[13] Levin, S. A. 1974. ”Dispersion and Population Interactions.”Am. Nat. 108, 207–228.
[14] Levins, R. and D. Culver. 1971. ”Regional Coexistence of Species and Competition Between Rare Species.”Proc. Nat. Acad. Sci. 68, 1246–1248. · Zbl 0217.57702
[15] McMurtrie, R. E. 1978. ”Persistence and Stability of Single Species and Prey-Predator Systems in Spatially Heterogeneous Environment.”Mathl. Biosci. 39, 11–51. · Zbl 0384.92011
[16] Maynard Smith, J. 1974.Models in Ecology. Cambridge: Cambridge University Press. · Zbl 0312.92001
[17] Rosen, G. 1977a. ”Effects of Diffusion on the Stability of the Equilibrium in Multispecies Ecological Systems.”Bull. Math. Biol. 39, 373–383. · Zbl 0354.92013
[18] – 1977b. ”On the Persistence of Ecological Systems.”J. Theor. Biol. 65, 795–799.
[19] Segal, L. A. and J. L. Jackson. 1972. ”Dispersive Structure: An Explanation and an Ecological Example.”J. Theor. Biol. 37, 545–559.
[20] Skellam, J. G. 1951. ”Random Dispersal in Theoretical Population.”Biometrika 38, 196–218. · Zbl 0043.14401
[21] Smith, E. F. 1972. ”Spatial Heterogeneity, Stability, and Density in Ecosystems.” InGrowth by Intussusception: Ecological Essays in Honor of G. Evelynn Hutchinson; Trans. Conn. Acad. Astrol. Sci. 44, 309–335.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.