Dubois, Didier; Prade, Henri A class of fuzzy measures based on triangular norms. A general framework for the combination of uncertain information. (English) Zbl 0473.94023 Int. J. Gen. Syst. 8, 43-61 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 Show Scanned Page Cited in 2 ReviewsCited in 98 Documents MSC: 94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory) Keywords:probability; possibility; necessity; belief function; uncertainty PDFBibTeX XMLCite \textit{D. Dubois} and \textit{H. Prade}, Int. J. Gen. Syst. 8, 43--61 (1982; Zbl 0473.94023) Full Text: DOI HAL References: [1] Alsina C., Busefal pp 18– (1980) [2] Banon G., Fuzzy Sets and Systems 5 pp 291– (1981) · Zbl 0449.60001 · doi:10.1016/0165-0114(81)90057-9 [3] Bellman R., Information Sciences 5 pp 149– (1973) · Zbl 0251.02059 · doi:10.1016/0020-0255(73)90009-1 [4] Dubois D., Proc. Second Int. Seminar of Fuzzy Set Theory pp 39– (1980) [5] D. Dubois , ”Ensembles Flous et Conception Assistcc par Ordinateur.” Rapport de Recherche No. 199, IMAG , Universite de Grenoble , France , 1980 . [6] Dubois D., Fuzzy Sets and Systems Theory and Applications. (1980) · Zbl 0444.94049 [7] Dubois D., Fuzzy Sets Theory and Applications to Policy Analysis ami Information Systems pp 59– (1980) [8] Dubois D., IEEE Trans, on Automatic Control 26 pp 926– (1981) · doi:10.1109/TAC.1981.1102744 [9] Frank M. J., Aequationes Mathematical 19 pp 194– (1979) · Zbl 0444.39003 · doi:10.1007/BF02189866 [10] H. Hamacher , ”Uber logische Vcrkniipfungen unscharfer Aussagen und deren zugehorige Bewertungs–funktionen.” In Progress in Cybernetics and Systems Research , Vol. II , edited by R. Trappl and F. de P. Hanika , Hemisphere Pub. Corp. , New York , 1975 , pp. 276 – 287 . [11] Kamp’e de Feriet J., C.R. de FAcademie des Sciences de Paris 269 pp 529– (1969) [12] Klement E. P., Proc. Int. Seminar on Fuzzy Set Theory pp 27– (1979) [13] Klement E. P., Fuzzy Sets and Systems 4 pp 83– (1980) · Zbl 0444.28001 · doi:10.1016/0165-0114(80)90066-4 [14] E. P. Klement , ”Construction of fuzzy (7–algebras using triangular norms.” Reprt No. 179, Institut fiir Malhemalik , J. Kepler Universital , Linz , Austria , 1980 . (To appear in Journal of Mathematical Analysis and Applications) . [15] Ling C. H., Publicationes Mathemuticae Debrecen 12 pp 189– (1965) [16] Mcnger K., Proceedings of the National Academy of Sciences 28 pp 535– (1942) [17] Menger K., C.R. Academie des Sciences de Paris 232 pp 2001– (1951) [18] Mcngcr K., Selected Papers in Logic and Foundations, Didactics, Economics pp 225– [19] Prade H., Proc. Int. Seminar on Fuzzy Set Theory pp 9– (1979) [20] Prade H., ” basee sur les normes triangulares.” (1980) [21] Prade H., littsefal pp 58– (1980) [22] Prade H., littsefal pp 55– (1980) [23] Prade H., Recent Developments in Fuzzy Set and Possibility Theory (1981) [24] Scliwcizer B., Aequationes Mulhemalicae 12 pp 156– (1975) · Zbl 0305.22004 · doi:10.1007/BF01836546 [25] Scliwcizer B., Puhlicationes Mathemalicae Debrecen 8 pp 169– (1961) [26] Scliwcizer B., Puhlicationes Mathemalicae Debrecen 10 pp 69– (1963) [27] Shackle G. L. S., Decision, Order and Time in Human Affairs (1961) [28] Shafcr G., A Mathematical Theory of Evidence. (1976) [29] M. Sugeno , Theory of Fuzzy Integral and their Applications. Ph.D. Thesis , Tokyo Institute of Technology , Tokyo. 1974 . [30] Trillas E., Sutchaslica pp 47– (1979) [31] Tsichritsis D., Journal of Mathematical Analysis and Applications 36 pp 60– (1971) · Zbl 0233.28005 · doi:10.1016/0022-247X(71)90018-7 [32] Yager R. R., Fuzzy Sets and Systems 4 pp 235– (1980) · Zbl 0443.04008 · doi:10.1016/0165-0114(80)90013-5 [33] Zadch L. A., Information and Control 8 pp 338– (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X [34] Zadch L. A., Information Sciences 8 pp 199– (1975) · Zbl 0397.68071 · doi:10.1016/0020-0255(75)90036-5 [35] Zadch L. A., Fuzzy Sets and Systems 1 pp 3– (1978) · Zbl 0377.04002 · doi:10.1016/0165-0114(78)90029-5 [36] Zadch L. A., Advances in Fuzzy Set Theory and Applications pp 3– (1979) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.