×

zbMATH — the first resource for mathematics

Some analytic bounds for zeta functions and class numbers. (English) Zbl 0474.12009

MSC:
11R42 Zeta functions and \(L\)-functions of number fields
11R23 Iwasawa theory
11R80 Totally real fields
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Hoffstein, J.: On the Siegel-Tatuzawa theorem. Acta Arithmetica38, in press (1979) · Zbl 0449.10030
[2] Hoffstein, J.: A Bound for Siegel’s zero. In press (1979) · Zbl 0474.12009
[3] Ingham, A.E.: The Distribution of Prime Numbers. Cambridge, 1932 · Zbl 0006.39701
[4] Myron Masley, J., Hugh, Montgomery, L.: Cyclotomic Fields with Unique Factorization, J. Reine Angew. Math. 286/287 (1976), pp. 248–256. · Zbl 0335.12013
[5] Odlyzko, A.: Some Analytic Estimates of Class Numbers and Discriminants Inventiones Math.29, 279–286 (1975) · Zbl 0306.12005
[6] Odlyzko, A.: Lower Bounds for Discriminants of Number Fields II, Tohoku Math. Journ.29, 209–216 (1977) · Zbl 0362.12005
[7] Stark, H.M.: Some Effective Cases of the Brauer-Siegel Theorem, Inventiones Math.23, 135–152 (1974) · Zbl 0278.12005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.