×

zbMATH — the first resource for mathematics

Riemann-Roch and topological K-theory for singular varieties. (English) Zbl 0474.14004

MSC:
14C40 Riemann-Roch theorems
55R50 Stable classes of vector space bundles in algebraic topology and relations to \(K\)-theory
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, M. F. &Hirzebruch, F., The Riemann-Roch theorem for analytic embeddings.Topology, 1 (1961), 151–166. · Zbl 0108.36402 · doi:10.1016/0040-9383(65)90023-6
[2] Baum, P., K-homology. To appear.
[3] Baum, P., Fulton, W. &MacPherson, R., Riemann-Roch for singular varieties.Publ. Math. IHES, 45 (1975), 101–167. · Zbl 0332.14003
[4] Baum, P., Fulton, W. & Quart, G.,Lefschetz-Riemann-Roch for singular varieties. Following article. · Zbl 0357.14004
[5] Berthelot, P., Grothendieck, A., Illusie, L., et al.,Théorie des intersections et théorème de Riemann-Roch. Springer Lecture Notes in Mathematics, 225 (1971). · Zbl 0218.14001
[6] Borel, A. &Moore, J. C., Homology theory for locally compact spaces.Michigan Math. J., 7 (1960), 137–159. · Zbl 0116.40301 · doi:10.1307/mmj/1028998385
[7] Borel, A. &Serre, J.-P., Le théorème de Riemann-Roch, d’après A. Grothendieck.Bull. Soc. Math. France, 86 (1958), 97–136.
[8] Dyer, E.,Cohomology theories. W. A. Benjamin, New York (1969).
[9] Fulton, W., A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties.Compositio Math., 34 (1977), 279–283. · Zbl 0367.14008
[10] Fulton, W. A note on the arithmetic genus. To appear inAmer. J. Math.
[11] Fulton, W. & MacPherson, R., Intersecting cycles on an algebraic variety.Real and complex singularities, Oslo, 1976,Sijthoff & Noordhoff (1978), 179–197.
[12] Grothendieck, A. & Dieudonne, J., Eléments de géométrie algébrique.Publ. Math. IHES Nos. 4 (1960), 8 (1961), 11 (1961).
[13] Iversen, B., Local Chern classes.Ann. Sci. École Norm. Sup., 4e série, 9 (1976), 155–169. · Zbl 0328.14006
[14] Serre, J.-P., Faisceaux algébriques cohérents.Ann. of Math., 61 (1955), 197–278. · Zbl 0067.16201 · doi:10.2307/1969915
[15] Verdier, J.-L., Le théorème de Riemann-Roch pour les intersections complètes.Seminaire de géometrie analytique de l’École Normale Supérieure 1974–75. Exposé IX,Astérique 36–37 (1976), 189–228.
[16] Whitehead, G. W., Generalized homology theories.Trans. Amer. Math. Soc., 102 (1962), 227–283. · Zbl 0124.38302 · doi:10.1090/S0002-9947-1962-0137117-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.