×

On subvarieties of Abelian varieties. (English) Zbl 0474.14016


MSC:

14H40 Jacobians, Prym varieties
14K20 Analytic theory of abelian varieties; abelian integrals and differentials
14H45 Special algebraic curves and curves of low genus
32G20 Period matrices, variation of Hodge structure; degenerations

Citations:

Zbl 0284.14015
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Barton, C., Clemens, C.H.: A result on the integral Chow ring of a generic principally polarized complex abelian variety of dimension four. Compositio Math.34, 49-67 (1977) · Zbl 0386.14004
[2] Beauville, A.: Prym varieties and the Schottky problem. Invent. Math.41, 149-196 (1977) · Zbl 0354.14013
[3] Griffiths, P.: Variations on a theorem of Abel. Invent. Math.35, 321-390 (1976) · Zbl 0339.14003
[4] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: Wiley 1978 · Zbl 0408.14001
[5] Kempf, G.: Deformations of symmetric products. In: Riemann Surfaces and Related Topics, Stony Brook, 1978. Annals of Math. Studies. in press
[6] Matsusaka, T.: On a characterization of a Jacobian variety. Mem. Coll. Sci. Kyoto, Ser. A.23, 1-19 (1959) · Zbl 0094.34103
[7] Morikawa, H.: Cycles and endomorphisms of abelian varieties. Nagoya Math. J.7, 95-102 (1954) · Zbl 0057.13004
[8] Mumford, D.: Curves and Thier Jacobians. Ann Arbor: University of Michigan Press 1975 · Zbl 0316.14010
[9] Stoll, W.: Value-Distribution of Holomorphic Maps into Compact Complex Manifolds. Lecture Notes 135, Berlin-New York: Springer-Verlag 1970 · Zbl 0195.36702
[10] Weil, A.: Variétés Abéliennes et Courbes Algébriques. Actes Sci. Ind. 1064, Paris: Hermann 1948
[11] Weil, A.: Zum Beweis des Torellischen Satzes. Nachr. Akad. Wiss. Göttingen 33-53 (1957) · Zbl 0079.37002
[12] Zariski, O.: Algebraic Surfaces, 2d edition, New York-Heidelberg-Berlin: Springer-Verlag 1971 · Zbl 0219.14020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.