×

zbMATH — the first resource for mathematics

Convergence of an accurate scheme for first order quasi linear equations. (English) Zbl 0474.65073

MSC:
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35F25 Initial value problems for nonlinear first-order PDEs
35F30 Boundary value problems for nonlinear first-order PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] 1. C. ARDOS, A. Y. LE ROUX, J. C. NEDELEC, Comm. in P.D.E. 4(9) (1979) pp. 1017-1034. Zbl0418.35024 MR542510 · Zbl 0418.35024 · doi:10.1080/03605307908820117
[2] 2. D. L. BOOK, J. P. BORIS, K. HAIN, J. Comp. Physics 18 (1975) pp. 248-283. Zbl0306.76004 · Zbl 0306.76004 · doi:10.1016/0021-9991(75)90002-9
[3] 3. A. HARTEN, J. M. HYMAN, P. D. LAX, Comm. Pure Applied Math. 29 (1976) pp. 297-322. Zbl0351.76070 MR413526 · Zbl 0351.76070 · doi:10.1002/cpa.3160290305
[4] 4. S. N. KRUZKOV, Math USSR Sb. 10 (1970) pp. 217-243.
[5] 5. P. D. LAX, B. WENDROFF, Comm. Pure Applied Math. 13 (1960) pp. 217-237. Zbl0152.44802 MR120774 · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[6] 6. A. Y. LE ROUX, Math. Comp. 31-140 (1977) pp. 848-872. Zbl0378.65053 MR478651 · Zbl 0378.65053 · doi:10.2307/2006117
[7] 7. A. Y. LE ROUX, Proc. Japan Acad. 52.9 (1976) pp. 488-491. Zbl0372.35015 MR438726 · Zbl 0372.35015 · doi:10.3792/pja/1195518212
[8] 8. A. Y. LE ROUX, CRAS. Paris. Ser. A. 285 (1977) pp. 351-354. Zbl0366.35019 · Zbl 0366.35019
[9] 9. A. Y. LE ROUX, CRAS. Paris. Ser. A.289 (1979) pp. 575-577. Zbl0436.35004 · Zbl 0436.35004
[10] 10. A. Y. E ROUX, Thèse d’État, Rennes (1979).
[11] 11. O. A. LEINIK, Amer, Math. Soc. Transl. Série 2, 33 (1963) pp. 285-290.
[12] 12. J. OVADIA, P. A. RAVIART, Rapport CEA, Limeil (1978).
[13] 13. B. VAN LEER, J. Comp. Physics, 32.1 (1979) pp. 101-136.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.