×

zbMATH — the first resource for mathematics

Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups. (English) Zbl 0474.93020

MSC:
93B10 Canonical structure
93C05 Linear systems in control theory
93C35 Multivariable systems, multidimensional control systems
93B40 Computational methods in systems theory (MSC2010)
93B17 Transformations
Software:
EISPACK; LINPACK
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] D. G. Luenberger: Canonical forms for linear multivariable systems. IEEE Trans. Autom. Control AC-12 (1967), 290-293.
[2] P. Brunovsk7: A classification of linear controllable systems. Ky bernetika 3 (1970), 173 - 187.
[3] R. E. Kalman: Kronecker invariants and feedback. Proc. NRL-MRC Conf. (L. Weiss, Academic Press, N.Y. 1972, pp. 459-471. · Zbl 0308.93008
[4] V. M. Popov: Invariant description of linear time-invariant controllable systems. SIAM J. Control 10 (1972), 252-264. · Zbl 0251.93014
[5] M. J. Denham: Canonical forms for the identification of linear multivariable systems. IEEE Trans. Autom. Control AC-19 (1974), 646-656. · Zbl 0291.93013 · doi:10.1109/TAC.1974.1100708
[6] K. Glover J. C. Willems: Parametrization of linear dynamical systems: Canonical forms and identifiability. IEEE Trans. Autom. Control AC-19 (1974), 640-646. · Zbl 0296.93008 · doi:10.1109/TAC.1974.1100711
[7] J. Rissanen: Basis of invariants and canonical forms for linear dynamic systems. Automatica 70 (1974), 175-182. · Zbl 0307.93010 · doi:10.1016/0005-1098(74)90022-3
[8] O. H. Bosgra A. J. J. Van der Weiden: Input-output invariants for linear multivariable systems. IEEE Trans. Autom. Control AC-25 (1980), 20-36. · Zbl 0432.93011
[9] M. M. Konstantinov P. Hr. Petkov N. D. Christov: Synthesis of linear systems with desired equivalent form. J. Comp. & Appl. Math. 6 (1980), 27-35. · Zbl 0439.93020 · doi:10.1016/0771-050X(80)90014-5
[10] M. M. Konstantinov S. P. Patarinski P. Hr. Petkov N. D. Christov: Synthesis of linear control systems with prescribed dynamics. Proc. First Internat. Conf. on Math. Modeling, Aug. 1977 St. Louis (Miss.) vol. 3, pp. 1639-1648. · Zbl 0387.93023
[11] M. M. Konstantinov P. Hr. Petkov N. D. Christov: The serial canonical form and synthesis of linear multivariable systems. Podstawy Sterowania 9 (1979), 295 - 308. · Zbl 0424.93017
[12] M. M. Konstantinov P. Hr. Petkov N. D. Christov: Synthesis of linear multivariable systems with prescribed equivalent form. Systems Sci. 5 (1979), 381 - 394. · Zbl 0444.93029
[13] D. Jordan B. Sridhar: An efficient algorithm for calculation of Luenberger canonical form. IEEE Trans. Autom. Control AC-18 (1973), 292-295. · Zbl 0261.93008 · doi:10.1109/TAC.1973.1100291
[14] K. B. Datta: An algorithm to compute canonical forms in multivariable control systems. IEEE Trans. Autom. Control AC-22 (1977), 129-132. · Zbl 0346.93009 · doi:10.1109/TAC.1977.1101421
[15] J. Hickin N. K. Sinha: An efficient algorithm for transformation to canonical forms. IEEE Trans. Autom. Control AC-22 (1977), 652-653. · Zbl 0361.93018 · doi:10.1109/TAC.1977.1101548
[16] E. J. Davison W. Gesing S. H. Wang: An algorithm for obtaining the minimal realization of a linear time-invariant system and determining if a system is stabilizable-detectable. Proc. 1977 IEEE Conf. on Dec. & Control, pp. 777-781. · Zbl 0388.93011 · doi:10.1109/TAC.1978.1101896
[17] J. D. Aplevich: Direct computation of canonical forms for linear systems by elementary matrix operations. IEEE Trans. Autom. Control AC-19 (1974), 124-126. · Zbl 0309.93008
[18] B. T. Smith J. M. Boyle J. J. Dongarra B. S. Garbow Y. Ikebe V. C. Klema C. B. Moler: Matrix Eigensystem Routines-EISPACK Guide. Springer-Verlag, Berlin 1976. · Zbl 0325.65016
[19] J. J. Dongarra J. R. Bunch C. B. Moler G. W.Stewart: LINPACK Users’ Guide. SIAM, Philadelphia 1979. · Zbl 0476.68025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.