×

\(L\)-functions at \(s=1\). IV: First derivatives at \(s=0\). (English) Zbl 0475.12018


MSC:

11R42 Zeta functions and \(L\)-functions of number fields
11M41 Other Dirichlet series and zeta functions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Birch, B. J., Diophantine Analysis and modular functions, (Algebraic Geometry (1969), Oxford Univ. Press: Oxford Univ. Press London/New York), 35-42 · Zbl 0246.10017
[2] Coates, J.; Wiles, A., On the conjecture of Birch and Swinnerton-Dyer, Invent. Math., 39, 223-251 (1977) · Zbl 0359.14009
[3] Helmut, Hasse, Neue Begründung der komplexen Multiplikation I, II, Crelle, 165, 64-88 (1931) · Zbl 0002.12002
[4] Kenku, M. A., On the \(L\)-function of quadratic forms, Crelle, 276, 36-43 (1975) · Zbl 0305.10020
[5] Lang, S., Elliptic Functions (1973), Addison-Wesley: Addison-Wesley Reading, Mass
[6] Robert, G., Unités elliptiques, Bull. Soc. Math. France, No. 36 (1973)
[7] Schertz, Reinhard, Die singulären Werte der Weberschen Funktionen \(f_1, f_2, f_3, γ_2, γ_3\), Crelle, 286/287, 46-74 (1976) · Zbl 0335.12018
[8] Schertz, Reinhard, \(L\)-Reihen in imaginär-quadratischen Zahlkörpern und Ihre Anwendung auf Klassenzahlprobleme bei quadratischen und biquadratischen Zahlkörpern, I, Crelle, 262/263, 120-133 (1973) · Zbl 0285.12015
[9] Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions (1971), Iwanami Shoten: Iwanami Shoten Tokyo, and Princeton Univ. Press, Princeton, N.J. · Zbl 0221.10029
[10] Siegel, C. L., Lectures on Advanced Analytic Number Theory (1961), Tata Institute of Fundamental Research: Tata Institute of Fundamental Research Bombay
[11] Stark, H. M., \(L\)-functions at \(s = 1\). I, II, III, Advances in Math., 22, 64-84 (1976) · Zbl 0348.12017
[12] Stark, H. M., Class fields for real quadratic fields and L-series at 1, (Algebraic Number Fields (1977), Academic Press: Academic Press New York) · Zbl 0391.12006
[13] Weber, H., (Lehrbuch der Algebra, Vol. 3 (1961), Chelsea: Chelsea New York)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.