×

zbMATH — the first resource for mathematics

p-adic L-functions for elliptic curves with complex multiplication. I. (English) Zbl 0475.14021

MSC:
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
11S40 Zeta functions and \(L\)-functions
14K22 Complex multiplication and abelian varieties
11R42 Zeta functions and \(L\)-functions of number fields
14H45 Special algebraic curves and curves of low genus
14H52 Elliptic curves
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] N. Arthaud : On Birch and Swinnerton-Dyer’s conjecture for elliptic curve with complex multiplication I . Compositio Math. 37 (1978) 209-232. · Zbl 0396.12011 · numdam:CM_1978__37_2_209_0 · eudml:89380
[2] J. Coates : p-adic L functions and Iwasawa theory in Algebraic Number Fields , editor A. Fröhlich Academic Press, 1977.
[3] J. Coates and A. Wiles : On the conjecture of Birch and Swinnerton-Dyer , Inventiones Mathematicae 39 (1977) 223-251. · Zbl 0359.14009 · doi:10.1007/BF01402975 · eudml:142468
[4] J. Coates and A. Wiles : Kummer’s criterion for Hürwitz numbers . Proceedings of the International Conference on Algebraic Number Theory. Kyoto Japan 1976. · Zbl 0369.12009
[5] J. Coates and A. Wiles : On p-adic L-functions and elliptic units . J. Austral. Math. Soc. (series A) 26 (1978) 1-25. · Zbl 0442.12007
[6] A. Fröhlich : Formal groups . Lecture Notes in Mathematics 74. Springer 1968. · Zbl 0177.04801 · doi:10.1007/BFb0074373
[7] E. Hecke : Mathematishe werke n ^\circ 14. Eine neue Art von Zeta funktionen und ihre Beziehungen zur Verteilung der Primzahlen , Zweite Mitteilung p. 249-289.
[8] K. Iwazawa : Lectures on p-adic L-functions . Ann. of Maths Studies 74. Princeton University Press, 1972. · Zbl 0236.12001 · doi:10.1515/9781400881703
[9] N. Katz : The Eisenstein measure and p-adic interpolation . Amer. J. Math. 99, p. 238-311. · Zbl 0375.12022 · doi:10.2307/2373821
[10] N. Katz : Formal groups and p-adic interpolation , Astérisque 41-42, p. 55-65. · Zbl 0351.14024
[11] H.W. Leopoldt : Eine p-adische Theorie der Zetawerte II . J. Reine Ang. Math. 274-275 (1975) 224-239. · Zbl 0309.12009 · doi:10.1515/crll.1975.274-275.224 · crelle:GDZPPN002190567 · eudml:151578
[12] S. Lichtenbaum : On p-adic L-functions associated to elliptic curves , Inventiones Mathematicae 56 (1980) 19-55. · Zbl 0425.12017 · doi:10.1007/BF01403154 · eudml:142685
[13] J. Lubin : One parameter formal Lie groups over p-adic integer rings . Ann. of Maths 80 (1964) 464-484. · Zbl 0135.07003 · doi:10.2307/1970659
[14] J. Lubin and J. Tate : Formal complex multiplication in local fields . Ann. of Maths 81 (1965) 380-387. · Zbl 0128.26501 · doi:10.2307/1970622
[15] J. Manin and S. Vishik : p-adic Hecke series for quadratic imaginary fields . Math. Sbornik 24 (1974) 345-372. · Zbl 0329.12016 · doi:10.1070/SM1974v024n03ABEH001916
[16] G. Robert : Unités elliptiques . Bull. Soc. Math. France, mémoire 36 (1973). · Zbl 0314.12006 · numdam:MSMF_1973__36__5_0 · eudml:94657
[17] G. Shimura : Introduction to the arithmetic theory of automorphic functions . Pub. Math. Soc. Japan II (1971). · Zbl 0221.10029
[18] C.L. Siegel : Lectures on advanced analytic number theory . Tata Institute of fundamental research Bombay. · Zbl 0278.10001
[19] J. Tate : Arithmetic of elliptic curves . Inventiones Math. 23 (1974) 179-206. · Zbl 0296.14018 · doi:10.1007/BF01389745 · eudml:142261
[20] S. Vishik : The p-adic zeta function of an imaginary quadratic field and the Leopold regulator . Math. Sbornik 102 (144) (1977) No. 2. · Zbl 0443.12007 · doi:10.1070/SM1977v031n02ABEH002295
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.