×

zbMATH — the first resource for mathematics

Invariants d’un sous-groupe unipotent maximal d’un groupe semi-simple. (French) Zbl 0475.14038

MSC:
14L30 Group actions on varieties or schemes (quotients)
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
14L24 Geometric invariant theory
14L35 Classical groups (algebro-geometric aspects)
20G05 Representation theory for linear algebraic groups
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] H. KRAFT, Geometric methods in invariant theory (à paraître dans les Springer Lecture Notes). · Zbl 0669.14003
[2] R.P. STANLEY, Hilbert functions of graded algebras, Adv. in Maths., 28 (1978), 57-83. · Zbl 0384.13012
[3] M. BRION, La série de Poincaré des U-invariants, C.R.A.S., Paris, t. 293 (21 septembre 1981). · Zbl 0476.22012
[4] M. BRION, Représentations irréductibles des groupes de Lie simples dont l’algèbre des U-invariants est régulière, C.R.A.S., Paris, t. 293 (2 novembre 1981). · Zbl 0485.22016
[5] H. FREUDENTHAL, H. de VRIES, Linear Lie groups, Academic Press, 1968. · Zbl 0377.22001
[6] V.L. POPOV, Constructive invariant theory, Astérique, n° 87-88 (1981), 303-334. · Zbl 0491.14004
[7] V.L. POPOV, Stability criteria for the action of a semisimple group on a factorial manifold, Math. USSR Iszvestia, 4 (1970), 527-535. · Zbl 0261.14011
[8] T.A. SPRINGER, On the invariant theory of SU2, Proc. of the Koninkl. Akad. van Wetenschappen, vol. 83 (3), 1980, 339-345. · Zbl 0449.22017
[9] N. BOURBAKI, Groupes et algèbres de Lie, chapitres 4 à 6 (Hermann). · Zbl 0483.22001
[10] A.G. ELASHVILI, Canonical form and stationary subalgebras of points of general position for simple linear Lie groups. Funct. Anal., 6 (1972), 44-53. · Zbl 0252.22015
[11] G.W. SCHWARZ, Representations of simple Lie groups with regular ring of invariants, Invent. Math., 49 (1978), 167-191. · Zbl 0391.20032
[12] V.G. KAC, Some remarks on nilpotent orbits, J. of Alg., 64 (1980), 190-213. · Zbl 0431.17007
[13] G.W. SCHWARZ, Representations of simple Lie groups with a free module of covariants, Invent. Math., 50 (1978), 1-12. · Zbl 0391.20033
[14] B. KOSTANT, Lie group representations of polynomial rings, Amer. J. of Math., 85 (1963), 327-402. · Zbl 0124.26802
[15] Th. VUST, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, 26, 1 (1976), 1-31. · Zbl 0314.20035
[16] W. BORHO, H. KRAFT, Über bahnen und deren deformationen bei linearen aktionen reduktiver gruppen, Comment. Math. Helv., 54 (1979), 61-104. · Zbl 0395.14013
[17] R. ELKIK, Singularités rationnelles et déformations, Inv. Math., 47 (1978), 139-147. · Zbl 0363.14002
[18] N. BOURBAKI, Groupes et algèbres de Lie, chap. VII (Hermann). · Zbl 0483.22001
[19] E.B. DYNKIN, Maximal subgroups of the classical groups, A.M.S. Translations, vol. 6 (1957), 245-378. · Zbl 0077.03403
[20] J.I. IGUSA, A classification of spinors up to dimension twelve, Amer. J. of Math., 92 (1970). · Zbl 0217.36203
[21] D. MUMFORD, Geometric invariant theory, Springer Verlag, 1965. · Zbl 0147.39304
[22] F. GROSSHANS, Observable subgroups and Hilbert’s fourteenth problem, Amer. J. of Math., 95 (1973), 229-253. · Zbl 0309.14039
[23] D. HILBERT, Über die vollen invariantensysteme, Math. Annalen, 42 (1893), 313-373. · JFM 25.0173.01
[24] W. HESSELINK, Desingularizations of varieties of nullforms, Inv. Math., 55 (1979), 141-163. · Zbl 0401.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.