Symmetric functions, conjugacy classes and the flag variety. (English) Zbl 0475.14041


14L30 Group actions on varieties or schemes (quotients)
16Rxx Rings with polynomial identity
20G15 Linear algebraic groups over arbitrary fields
16S50 Endomorphism rings; matrix rings
16W50 Graded rings and modules (associative rings and algebras)
16W20 Automorphisms and endomorphisms
14M15 Grassmannians, Schubert varieties, flag manifolds
Full Text: DOI EuDML


[1] Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helvetici54, 61-104 (1979) · Zbl 0395.14013
[2] Hotta, R., Shimomura, N.: The fixed point Subvarieties of Unipotent Transformations on Generalized Flag Varieties and the Green Functions, Math. Ann.241, 193-208 (1979) · Zbl 0463.20032
[3] Hotta, R., Springer, T.A.: A Specialization Theorem for certain Weyl Group Representations and an application to Green Polynomials of Unitary Groups. Invent. Math.41, 113-127 (1977) · Zbl 0389.20037
[4] Kazhdan, D., Lusztig, G.: A topological approach to Springer’s representations, Adv. in Math. v. 38, n. 2, (1988) 222-228 · Zbl 0458.20035
[5] Kleiman, S.L.: Rigorous foundations of Schubert’s enumerative calculus. Proc. of Symp. in Pure Math. Vol. XXVIII, Providence 1976 · Zbl 0336.14001
[6] Kostant, B.: Lie groups representations on polynomial rings. Amer. J. Math.85, 327-404 (1963) · Zbl 0124.26802
[7] Kraft, H.: Conjugacy Classes and Weyl Group Representations, Proc. Torun Conf. Asterisque · Zbl 0489.17002
[8] Kraft, H., Procesi, C.: Closures of Conjugacy Classes of Matrices are Normal. Invent. Math.53, 227-247 (1979) · Zbl 0434.14026
[9] Macdonald, I.G.: Symmetric functions and Hall polynomials, Oxford Univ. Press 1979 · Zbl 0487.20007
[10] Robinson, G. de B.: Representation theory of the symmetric group. University of Toronto Press 1961 · Zbl 0102.02002
[11] Slodowy, P.: Four lectures on simple group and singularities. Comm. Math. Inst. Rijksuniv. Utrecht 11-1980 · Zbl 0425.22020
[12] Spaltenstein, N.: The fixed point set of a unipotent transformation on the flag manifold. Proc. Kon. Ak. v. Wet79, 452-456 (1976) · Zbl 0343.20029
[13] Spaltenstein, N.: On the fixpoint set of a unipotent element on the variety of Borel subgroups. Topology16, 203-204 (1977) · Zbl 0445.20021
[14] Springer, T.A.: Trigonometrical Sums, Green Functions of Finite Groups and Representations of Weyl Groups. Invent. Math.36, 173-207 (1976) · Zbl 0374.20054
[15] Springer, T.A.: A construction of Representations of Weyl Groups. Invent. Math.44, 279-293 (1978) · Zbl 0376.17002
[16] Steinberg, R.: On the Desingularization of the Unipotent Variety. Invent. Math.36, 209-224 (1976) · Zbl 0352.20035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.