zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sur l’approximation de fonctions intégrables sur l’interval-0,1-ferme par des polynômes de Bernstein modifies. (French) Zbl 0475.41025

41A36Approximation by positive operators
41A10Approximation by polynomials
Full Text: DOI
[1] Berens, H.; De Vore, A.: Quantitative theorems for lp-spaces. Approximation theory II, 289-298 (1976)
[2] Coatmelec, Chr: Approximation et interpolation des fonctions différentiables de plusieurs variables. Ann. sci. Ecole norm. Sup., 271-341 (1966) · Zbl 0155.10902
[3] Derriennic, M. M.: Sur l’approximation des fonctions d’une ou plusieurs variables par des polynômes de Bernstein modifiés et application au probléme des moments. Thése de 3e cycle (1978)
[4] Durrmeyer, J. L.: Une formule d’inversion de la transformée de Laplace: applications à la théorie des moments. Thése de 3e cycle (1967)
[5] Lorentz, G. G.: Bernstein polynomials. (1953)
[6] Shisha, O.; Mond, B.: The degree of convergence of sequences of linear positive operators. Proc. nat. Acad. sci. USA 60, 1196-1200 (1968) · Zbl 0164.07102
[7] Timan, A. F.: Theory of approximation of functions of a real variable. (1966)
[8] Voronowskaja, E.: Détermination de la forme asymptotique d’approximation des fonctions par des polynômes de Bernstein. C. R. Acad. sci. URSS, 79-85 (1932)