×

Stability and isolation phenomena for Yang-Mills fields. (English) Zbl 0475.53060


MSC:

53C80 Applications of global differential geometry to the sciences
53C05 Connections (general theory)
81T08 Constructive quantum field theory
Full Text: DOI

References:

[1] Aronszajn, N.: J. Math. Pure Appl.35, 235–249 (1957)
[2] Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Y.I.: Phys. Lett. A65, 185–187 (1978)
[3] Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Proc. R. Soc. London Ser. A362, 425–461 (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[4] Besse, A.: Manifolds all of whose geodesics are closed. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0387.53010
[5] Bourguignon, J.-P.: Séminaire A. Besse sur la géométrie riemannienne de dimension 4. Expos. no XVI, 1–26 (to appear)
[6] Bourguignon, J.-P., Karcher, H.: Ann. Sci. E.N.S.11, 71–92 (1978)
[7] Bourguignon, J.-P., Lawson, Jr. H.B., Simons, J.: Proc. Acad. Sci. USA76, 1550–1553 (1979) · Zbl 0408.53023 · doi:10.1073/pnas.76.4.1550
[8] Daniel, M., Mitter, P.K., Viallet, C.M.: Phys. Lett. B77, 77–79 (1978)
[9] Drinfeld, V.G., Manin, Y.I.: Commun. Math. Phys.63, 177–192 (1978) · Zbl 0407.22017 · doi:10.1007/BF01220851
[10] Gallot, S., Meyer, D.: J. Math. Pures Appl.54, 259–284 (1975)
[11] Gantmacher, F.R.: The theory of matrices. New York: Chelsea Press, N.Y. 1959 · Zbl 0085.01001
[12] Milnor, J.: Ann. Math.64, 399–405 (1956) · Zbl 0072.18402 · doi:10.2307/1969983
[13] Milnor, J.: Morse theory. Annals of Math. Studies, No. 51. Princeton, NJ: Princeton University Press 1963 · Zbl 0108.10401
[14] Palais, R.S., Smale, S.: Bull. A.M.S.70, 165–171 (1964) · Zbl 0119.09201 · doi:10.1090/S0002-9904-1964-11062-4
[15] Thurston, W.: Bull. A.M.S.80, 304–307 (1974) · Zbl 0295.57014 · doi:10.1090/S0002-9904-1974-13475-0
[16] Uhlenbeck, K.: To appear
[17] Weinstein, A.: Fat bundles. Preprint 1980 · Zbl 0449.53035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.