Mixed finite element method for the Stokes and Navier-Stokes equations in a nonconvex polxgon. (Méthodes d’éléments finis mixtes pour les équations de Stokes et de Navier-Stokes dans un polygone non convexe.) (French. English summary) Zbl 0475.76035

Summary: We study a mixed finite element method for the steady-state Navier-Stokes equations in a polygon which is not necessarily convex. To take into account the singularities of the solution near the corners, we introduce weighted Sobolev spaces and prove the convergence of the method. The use of a non-uniformly regular family of triangulations allows us to get best error estimates.


76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI


[1] J. Bergh, J. Löfström,Interpolation Spaces. An introduction. (1976), Springer-Verlag.
[2] C. Bernardi,Thèse de 3ème cycle, Paris 6 (1979).
[3] C. Bernardi, G. Raugel,Méthodes mixtes pour les équations de Navier-Stokes dans un ouvert polygonal plan. Rapport interne du laboratoire d’Analyse Numérique, Université Paris 6 (1980).
[4] L. Cattabriga,Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova31, (1961), 1–33. · Zbl 0116.18002
[5] P. G. Ciarlet,The finite element method for elliptic problems (1978), North Holland. · Zbl 0383.65058
[6] P. Clement,Approximation by finite element functions using local regularization. RAIRO9, no 2 (1975), 77–84. · Zbl 0368.65008
[7] C. Dauge, Thèse de 3ème Cycle, Nantes (1980).
[8] V. Girault, P. A. Raviart,An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math.33, (1979), 235–271. · Zbl 0414.65068
[9] V. Girault, P. A. Raviart,Finite element approximation of the Navier-Stokes equations. Lecture Notes no 749, Springer-Verlag (1979). · Zbl 0413.65081
[10] P. Grisvard,Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyedral domain. Numerical Solution of Partial Differential Equations III, Synspade 1975, (1976), Academic Press, 207–274.
[11] P. Grisvard,Singularité des solutions du problème de Stokes dans un polygone. Publications de l’université de Nice (1978).
[12] R. B. Kellogg, J. E. Osborn,A regularity result for the Stokes problem in a convex polygon. J. Functional Analysis21 no 4 (1976), 397–431. · Zbl 0317.35037
[13] V. A. Kondratiev,Boundary value problems for elliptic equations in domains with conical or angular points. Trudi Mosk. Mat. Obš.16, (1966), 209–292.
[14] V. A. Kondratiev,Asymptotic behavior of a solution of the Navier-Stokes equation near the angular part of the boundary. Prikl. Mat. Meh.31, (1967), 118–123, J. Appl. Math. Mech.31 (1967), 125–129.
[15] A. Kufner,Einige Eigenschaften der Sobolevschen Raüme mit Belegungsfunktion. Czech. Math. J.15, 90 (1965), 597–620. · Zbl 0148.37303
[16] O. A. Ladyzhenskaya,The mathematical theory of viscous incompressible flow. (1962), Gordon Breach, New-York. · Zbl 0149.31203
[17] R. Lozi,Résultats numériques de régularité du problème de Stokes et du laplacien itéré dans un polygone. RAIRO12, no 3 (1978), 267–282. · Zbl 0385.65025
[18] J. E. Osborn,Regularity of solutions of the Stokes problem in a polygonal domain. Numerical Solution of Partial Differential Equations III, Synspade 1975. (1976), Academic Press, 393–411.
[19] G. Raugel, Thèse de 3ème cycle, Rennes (1978).
[20] A. H. Schatz, L. B. Wahlbin,Maximum norm estimates in the finite element method on plane polygonal domains, Part I. Math. Comput.32, (1978), 73–109. · Zbl 0382.65058
[21] A. H. Schatz, L. B. Wahlbin,Maximum norm estimates in the finite element method on plane polygonal domains, Part II, Refinements. Math. Comput.33, (1979), 465–492. · Zbl 0417.65053
[22] R. Scholz,A mixed method for 4 th order problems using linear finite elements. RAIRO12, no 1 (1978), 85–90. · Zbl 0382.65059
[23] J. B. Seif,On the Green’s function for the biharmonic equation on a infinite wedge. Trans. Amer. Math. Soc.182, (1973), 241–260. · Zbl 0271.31005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.