×

zbMATH — the first resource for mathematics

Problem of the number of non-self-equivalent constructivizations. (English. Russian original) Zbl 0476.03046
Algebra Logic 19, 401-414 (1981); translation from Algebra Logika 19, 621-639 (1980).

MSC:
03D45 Theory of numerations, effectively presented structures
03D50 Recursive equivalence types of sets and structures, isols
03C57 Computable structure theory, computable model theory
03C15 Model theory of denumerable and separable structures
06A06 Partial orders, general
18B99 Special categories
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Functors, Wiley-Interscience, New York (1968). · Zbl 0197.29205
[2] S. S. Goncharov, ”Self-stability and computable Families of constructivizations,” Algebra Logika,14, No. 6, 647–680 (1975).
[3] S. S. Goncharov, ”On the number of non-self-equivalent constructivizations,” Algebra Logika,16, No. 3, 257–263 (1977).
[4] S. S. Goncharov, ”Non-self-equivalent constructivizations of Boolean algebras,” Mat. Zametki,19, No. 6, 853–858 (1976).
[5] V. P. Dobritsa, ”On recursively enumerable classes of constructive extensions and self-stability of algebras,” Sib. Mat. Zh.,16, No. 6, 1148–1156 (1975).
[6] Yu. L. Ershov, Theory of Enumerations [in Russian], Nauka, Moscow (1977).
[7] Yu. L. Ershov, Theory of Enumerations [in Russian], Vol. III, Novosibirsk (1974).
[8] A. I. Mal’tsev, ”Constructive models. I,” Usp. Mat. Nauk,16, No. 3, 3–60 (1961).
[9] A. I. Mal’tsev, ”Strongly related models and recursively perfect algebras,” Dokl. Akad. Nauk SSSR,145, No. 2, 276–279 (1962).
[10] A. I. Mal’tsev, Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1965).
[11] A. T. Nurtazin, ”Strong and weak constructivizations and computable families,” Algebra Logika,13, No. 3, 311–323 (1974).
[12] A. T. Nurtazin, ”Computable enumerations of classes and algebraic criteria of self-stability,” Author’s Abstract of Candidate’s Thesis, Novosibirsk (1975).
[13] M. G. Peretyat’kin, ”Strongly constructive models and enumerations of Boolean algebra of recursive sets,” Algebra Logika,10, No. 5, 535–537 (1971).
[14] R. La Roche, ”Recursively presented Boolean Algebras,” Notices Am. Math. Soc.,24, No.46, 552 (1977).
[15] C. C. Chang and H. K. Kaisler, Model Theory, 2nd ed., North-Holland, Amsterdam (1977).
[16] S. S. Goncharov, ”Computable one-valued enumerations,” Algebra Logika,19, No. 5, 507–551 (1980).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.