×

A perturbation theory near convex Hamiltonian systems. (English) Zbl 0476.34035


MSC:

34C25 Periodic solutions to ordinary differential equations
70H05 Hamilton’s equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arnold, V, Méthodes mathématiques de la mécanique classique, (1974), Editions de Moscou, Russian 76
[2] Blot, J, These 3^{eme} cycle, (1981), Ceremade, Université Paris-Dauphine
[3] Clarke, F, Solution périodique des équations hamiltoniennes, C. R. acad. sci. Paris, 287, 951-952, (1978) · Zbl 0422.35005
[4] Clarke, F, Periodic solutions to Hamiltonian inclusions, J. differential equations, 40, 1-6, (1981) · Zbl 0461.34030
[5] Clarke, F; Ekeland, I, Solutions périodiques, de période donnée, des équations hamiltoniennes, C. R. acad. sci. Paris, 287, 1013-1015, (1978) · Zbl 0404.34033
[6] Clarke, F; Ekeland, I, Hamiltonian trajectories having prescribed minimal period, Comm. pure appl. math., 33, 103-116, (1980) · Zbl 0403.70016
[7] Crandall, M; Rabinowitz, P, Bifurcation from simple eigenvalues, J. funct. anal., 8, 321-370, (1971) · Zbl 0219.46015
[8] Ekeland, I, Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. differential equations, 34, 523-534, (1979) · Zbl 0446.70019
[9] ()
[10] Krasnolselski, M, On special coverings of finite-dimensional spheres, Dokl. akad. nauk USSR, 103, 961-964, (1955)
[11] Moser, J, Regularization of Kepler’s problem and the averaging method on a manifold, Comm. pure appl. math., 23, 609-636, (1970) · Zbl 0193.53803
[12] Moser, J, Periodic orbits near an equilibrium and a theorem of alan Weinstein, Comm. pure appl. math., 24, 727-747, (1976) · Zbl 0346.34024
[13] Weinstein, A, Normal modes for nonlinear Hamiltonian systems, Invent. math., 20, 47-57, (1973) · Zbl 0264.70020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.