×

zbMATH — the first resource for mathematics

Asymptotic behavior of the scattering phase for non-trapping obstacles. (English) Zbl 0476.35014

MSC:
35B40 Asymptotic behavior of solutions to PDEs
35P25 Scattering theory for PDEs
35L05 Wave equation
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] K. ANDERSSON and R. MELROSE, The propagation of singularities along gliding rays, Invent, Math., 41 (1977), 197-232. · Zbl 0373.35053
[2] C. BARDOS, J.C. GUILLOT et J. RALSTON, La relation de Poisson pour l’équation des ondes dans un ouvert non-borné. Application à la théorie de la diffusion, preprint. · Zbl 0445.35071
[3] C. BARDOS, J.C. GUILLOT et J. RALSTON, Relation de Poisson pour l’équation des ondes dans un ouvert non-borné, Séminaire Goulaouic-Schwartz, 1979-1980, exposé n° 13. · Zbl 0445.35071
[4] M.S. BIRMAN, Perturbation of the spectrum of a singular elliptic operator under the variation of boundaries and boundary conditions, Dokl. Akad. Nauk SSSR, 137 (1961), 761-763 (in Russian); Soviet Math. Dokl., 2 (1961), 326-328. · Zbl 0146.34403
[5] M.S. BIRMAN, Perturbation of the continuous spectrum of a singular elliptic operator for changing boundary and boundary conditions, Vestnik Leningrad Univ., 1 (1962), 22-55 (in Russian).
[6] M. S. BIRMAN and M.G. KREIN, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 (1962), 475-478 (in Russian). · Zbl 0196.45004
[7] V.S. BUSLAEV, Scattering plane waves, spectral asymptotics and trace formulas in exterior problems, Dokl. Akad. Nauk SSSR, 197 (1971), 999-1002 (in Russian). · Zbl 0224.47023
[8] Y. COLIN DE VERDIERE, Une formule de trace pour l’opérateur de Schrödinger dans R3, Ann. Scient. Ec. Norm. Sup., 14 (1981), 27-39. · Zbl 0482.35068
[9] R. COURANT, Uber die eigenwerte bei den differentialgleichungen der mathematishen physik, Math. Z., 7 (1920), 1-57. · JFM 47.0455.02
[10] P. DEIFT, Classical scattering theory with a trace condition, Dissertation, Princeton University, 1976.
[11] I. GOHBERG and M.G. KREIN, Introduction to the theory of linear non-selfadjoint operators, AMS Translations, vol 18, Providence 1969. · Zbl 0181.13504
[12] L. GUILLOPE, Une formule de trace pour l’opérateur de Schrödinger dans rn, thèse, Université Scient. et Medicale Grenoble, 1981.
[13] V. Ia. IVRII, On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary, Functional Anal. i Pril., 14, n° 2 (1980), 25-34 (in Russian). · Zbl 0448.58024
[14] V.Ia. IVRII, Sharp spectral asymptotics for the Laplace-Beltrami operator under general ellipic boundary conditions, Functional Anal i Pril., 15, n° 1 (1981), 74-75 (in Russian). · Zbl 0455.35093
[15] A. JENSEN and T. KATO, Asymptotic behavior of the scattering phase for exterior domains, Comm. in P.D.E., 3 (1978), 1165-1195. · Zbl 0419.35067
[16] T. KATO, Monotonicy theorems in scattering theory, Hadronic Journal, 1 (1978), 134-154. · Zbl 0426.47004
[17] M.G. KREIN, On the trace formula in the theory of perturbation, Mat. Sb., 33 (75) (1953), 597-626 (in Russian). · Zbl 0052.12303
[18] M.G. KREIN, On perturbation determinants and a trace formula for unitary and selfadjoint operators, Dokl. Akad. Nauk SSSR, 144 (1962), 268-271. · Zbl 0191.15201
[19] P. LAX and R. PHILLIPS, Scattering theory, Academic Press, 1967. · Zbl 0186.16301
[20] P. LAX and R. PHILLIPS, Scattering theory for the wave equation in even space dimensions, Indiana Univ. Math. J., 22 (1972), 101-134. · Zbl 0236.35036
[21] P. LAX and R. PHILLIPS, The time delay operator and a related trace formula, Topics in Functional Analysis, edited by Gohberg and M. Kac, Academic Press, 1978, p. 197-215. · Zbl 0463.47006
[22] A. MAJDA, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math., 30 (1977), 165-194. · Zbl 0335.35076
[23] A. MAJDA and M. TAYLOR, Inverse scattering problems for transparant obstacles, electromagnetic waves and hyperbolic systems, Comm. in P.D.E., 2 (1977), 395-433. · Zbl 0373.35055
[24] A. MAJDA and J. RALSTON, An analogue of Weyl’s theorem for unbounded domains, I, II, III, Duke Math. J., 45 (1978), 183-196, 513-536 & 46, (1979), 725-731. · Zbl 0416.35058
[25] H.P. Mc KEAN and I.M. SINGER, Curvature and the eigenvalues of the Laplacian, J. Diff. Geometry, 1, (1967), 43-69. · Zbl 0198.44301
[26] R. MELROSE and J. SJÖSTRAND, Singularities of boundary value problems I, Comm. Pure Appl. Math., 31, (1978), 593-617. · Zbl 0368.35020
[27] R. MELROSE and J. SJÖSTRAND, Singularities of boundary value problems II, Comm. Pure Appl. Math., 35 (1982), 129-168. · Zbl 0546.35083
[28] R. MELROSE et J. SJÖSTRAND, Propagation de singularités pour des problèmes aux limites d’ordre 2, Séminaire Goulaouic-Schwartz, 1977-1978, exposé 15. · Zbl 0383.35043
[29] R. MELROSE, Singularities and energy decay in acoustical scattering, Duke Math. J., 46 (1979), 43-59. · Zbl 0415.35050
[30] R. MELROSE, Forward scattering by a convex obstacle, Comm. Pure Appl. Math., 33 (1980), 461-499. · Zbl 0435.35066
[31] V. PETKOV et G. POPOV, Asymptotique de la phase de diffusion pour des domaines non-convexes, C.R. Acad. Sc., Paris, 292 (1981), 275-277. · Zbl 0465.35071
[32] V. PETKOV, Comportement asymptotique de la phase de diffusion pour des obstacles non-convexes, Séminaire Goulaouic-Meyer-Schwartz, 1980-1981, Exposé 13. · Zbl 0497.35070
[33] PHAM THE LAI, Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien, Math. Scand., 48 (1981), 5-38. · Zbl 0466.35060
[34] J. RALSTON, Diffraction by convex bodies, Séminaire Goulaouic-Schwartz, 1978-1979, Exposé 23. · Zbl 0405.35028
[35] J. RALSTON, Propagation of singularities and the scattering matrix, In Singularities in boundary value problems, edited by H.G. Garnir, D. Reidel Publ. Company, 1981, p. 169-184. · Zbl 0471.35068
[36] J. RALSTON, Note on the decay of acoustic waves, Duke Math. J., 46 (1979), 799-804. · Zbl 0427.35043
[37] M. REED and B. SIMON, Scattering theory, Academic Press, 1979. · Zbl 0405.47007
[38] M. REED and B. SIMON, Analysis of operators, Academic Press, 1978. · Zbl 0401.47001
[39] R. SEELEY, A sharp asymptotic remainder estimate for the eigen-values of the Laplacian in a domain in R3, Adv. in Math., 29 (1978), 244-269. · Zbl 0382.35043
[40] B. VAINBERG, On the short wave asymptotic behavior as t → ∞ of solutions of nonstationary problems, Uspehi Mat. Nauk, 30, n° 2 (1975), 1-55 (in Russian) ; Russian Math. Surveys, 30 (1975), 1-58. · Zbl 0318.35006
[41] H. WEYL, Uber die asymptotische verteilung der eigenwerte, Göttinger Nachr., (1911), 110-117. · JFM 43.0435.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.