On an abstract control problem. (English) Zbl 0476.49007


49J27 Existence theories for problems in abstract spaces
49J45 Methods involving semicontinuity and convergence; relaxation
90C55 Methods of successive quadratic programming type
90C25 Convex programming


Zbl 0296.90036
Full Text: DOI


[1] Anger B., Math. Ann. 209 pp 127– (1974) · Zbl 0268.46006 · doi:10.1007/BF01351317
[2] Barbu V., Convexity and Optimization in Banach Spaces (1978) · Zbl 0379.49010
[3] Castaing C., Lecture Notes in Mathematics 580 (1977)
[4] Cristescu R., Topological Linear Spaces (in Rumanian) (1974)
[5] Ekeland, I. and Temam, R. 1974. ”Analyse Convexe et Problèmes Variationnels”. Paris: Dunod Gauthier-Villars.
[6] Kutateladze S. S., J. Math. Sibirski 18 pp 1057– (1977)
[7] Rockafellar R. T., Nonlinear Operators and the of Veariations 543 (1975)
[8] Rockafellar R. T., Convex Analysis (1969) · Zbl 0186.23901
[9] Rockafellar R. T., Conjugate duality and optimization Society for Industrual and Applied Mathematics
[10] Tiba D., An. Sti, Univ. ”Al.I. Cuza” Iaşi Secţ. Ia Mat. 23 pp 381– (1977)
[11] Zǎlinescu C., J. Math. Anal. Appl. 66 pp 651– (1978) · Zbl 0396.90070 · doi:10.1016/0022-247X(78)90260-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.