×

zbMATH — the first resource for mathematics

Four-dimensional topology: An introduction. (English) Zbl 0476.57005

MSC:
57N13 Topology of the Euclidean \(4\)-space, \(4\)-manifolds (MSC2010)
57-02 Research exposition (monographs, survey articles) pertaining to manifolds and cell complexes
57R80 \(h\)- and \(s\)-cobordism
57Q15 Triangulating manifolds
57R10 Smoothing in differential topology
57R65 Surgery and handlebodies
57R20 Characteristic classes and numbers in differential topology
57R40 Embeddings in differential topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. W. Alexander, On the subdivision of a 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8. · JFM 50.0659.01
[2] Selman Akbulut, On 2-dimensional homology classes of 4-manifolds, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 1, 99 – 106. · Zbl 0355.57013 · doi:10.1017/S0305004100053718 · doi.org
[3] Selman Akbulut, On representing homology classes of 4-manifolds, Invent. Math. 49 (1978), no. 3, 193 – 198. · Zbl 0395.57013 · doi:10.1007/BF01390186 · doi.org
[4] S. Akbulut, Private communication.
[5] Selman Akbulut and Robion Kirby, An exotic involution of \?\(^{4}\), Topology 18 (1979), no. 1, 75 – 81. · Zbl 0465.57013 · doi:10.1016/0040-9383(79)90015-6 · doi.org
[6] Selman Akbulut and Robion Kirby, Mazur manifolds, Michigan Math. J. 26 (1979), no. 3, 259 – 284. · Zbl 0443.57011
[7] Selman Akbulut and Robion Kirby, Branched covers of surfaces in 4-manifolds, Math. Ann. 252 (1979/80), no. 2, 111 – 131. · Zbl 0421.57002 · doi:10.1007/BF01420118 · doi.org
[8] S. Akbulut and R. Kirby, A simply connected 4-manifold with b2 = 22 and \sigma = 16 (preprint).
[9] S. Akbulut and R. Kirby, Private communication.
[10] Aldo Andreotti and Theodore Frankel, The second Lefschetz theorem on hyperplane sections, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 1 – 20. · Zbl 0191.19301
[11] J. J. Andrews and M. L. Curtis, Knotted 2-spheres in the 4-sphere, Ann. of Math. (2) 70 (1959), 565 – 571. · Zbl 0105.17406 · doi:10.2307/1970330 · doi.org
[12] Anthony Bak, The computation of surgery groups of odd torsion groups, Bull. Amer. Math. Soc. 80 (1974), no. 6, 1113 – 1116. · Zbl 0336.18012
[13] D. Barden, h-cobordisms between 4-manifolds, Lecture notes, Cambridge Univ., 1964.
[14] Israel Berstein and Allan L. Edmonds, The degree and branch set of a branced covering, Invent. Math. 45 (1978), no. 3, 213 – 220. · Zbl 0359.55003 · doi:10.1007/BF01403169 · doi.org
[15] J. M. Boardman, Some embeddings of 2-spheres in 4-manifolds, Proc. Cambridge Philos. Soc. 60 (1964), 354 – 356. · Zbl 0127.39102
[16] Jacques Boéchat and André Haefliger, Plongements différentiables des variétés orientées de dimension 4 dans \?\(^{7}\), Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 156 – 166 (French).
[17] E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171 – 219. · Zbl 0259.14005
[18] William W. Boone, The word problem, Ann. of Math. (2) 70 (1959), 207 – 265. · Zbl 0102.00902 · doi:10.2307/1970103 · doi.org
[19] W. W. Boone, W. Haken, and V. Poenaru, On recursively unsolvable problems in topology and their classification, Contributions to Math. Logic (Colloquium, Hannover, 1966) North-Holland, Amsterdam, 1968, pp. 37 – 74. · Zbl 0246.57015
[20] William Browder, Surgery on simply-connected manifolds, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65. · Zbl 0239.57016
[21] William Browder, Embedding smooth manifolds, Proc. Internat. Congr. Math. (Moscow, 1966) Izdat. ”Mir”, Moscow, 1968, pp. 712 – 719.
[22] William Browder, Manifolds and homotopy theory, Manifolds — Amsterdam 1970 (Proc. Nuffic Summer School), Springer, Berlin, 1971, pp. 17 – 35.
[23] William Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155 – 163. · Zbl 0166.19702
[24] W. Browder, J. Levine, and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017 – 1028. · Zbl 0134.42801 · doi:10.2307/2373259 · doi.org
[25] Edgar H. Brown Jr., Abstract homotopy theory, Trans. Amer. Math. Soc. 119 (1965), 79 – 85. · Zbl 0129.15301
[26] Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113 – 115. , https://doi.org/10.1090/S0002-9904-1960-10420-X Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74 – 76.
[27] Stewart S. Cairns, The manifold smoothing problem, Bull. Amer. Math. Soc. 67 (1961), 237 – 238. · Zbl 0103.15801
[28] Stewart S. Cairns, Introduction of a Riemannian geometry on a triangulable 4-manifold, Ann. of Math. (2) 45 (1944), 218 – 219. · Zbl 0063.00683 · doi:10.2307/1969264 · doi.org
[29] Stewart S. Cairns, Homeomorphisms between topological manifolds and analytic manifolds, Ann. of Math. (2) 41 (1940), 796 – 808. · Zbl 0025.23502 · doi:10.2307/1968860 · doi.org
[30] J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83 – 112. · Zbl 0424.57007 · doi:10.2307/1971245 · doi.org
[31] Sylvain E. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976), no. 2, 69 – 170. · Zbl 0348.57017 · doi:10.1007/BF01402340 · doi.org
[32] Sylvain E. Cappell, On connected sums of manifolds, Topology 13 (1974), 395 – 400. · Zbl 0291.57007 · doi:10.1016/0040-9383(74)90030-5 · doi.org
[33] Sylvain Cappell, Superspinning and knot complements, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 358 – 383. · Zbl 0281.57001
[34] Sylvain E. Cappell, Manifolds with fundamental group a generalized free product. I, Bull. Amer. Math. Soc. 80 (1974), 1193 – 1198. · Zbl 0341.57007
[35] Sylvain E. Cappell, Unitary nilpotent groups and Hermitian \?-theory. I, Bull. Amer. Math. Soc. 80 (1974), 1117 – 1122. · Zbl 0322.57020
[36] S. Cappell, R. Lashof, and J. Shaneson, A splitting theorem and the structure of 5-manifolds, Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971) Academic Press, London, 1972, pp. 47 – 58. · Zbl 0255.57005
[37] Sylvain E. Cappell and Julius L. Shaneson, On four dimensional surgery and applications, Comment. Math. Helv. 46 (1971), 500 – 528. · Zbl 0233.57015 · doi:10.1007/BF02566862 · doi.org
[38] Sylvain E. Cappell and Julius L. Shaneson, Some new four-manifolds, Ann. of Math. (2) 104 (1976), no. 1, 61 – 72. · Zbl 0345.57003 · doi:10.2307/1971056 · doi.org
[39] Sylvain E. Cappell and Julius L. Shaneson, Invariants of 3-manifolds, Bull. Amer. Math. Soc. 81 (1975), 559 – 562. · Zbl 0331.57003
[40] Sylvain E. Cappell and Julius L. Shaneson, Branched cyclic coverings, Knots, groups and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Princeton Univ. Press, Princeton, N.J., 1975, pp. 165 – 173. Ann. of Math. Studies, No. 84. · Zbl 0309.55001
[41] Sylvain E. Cappell and Julius L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277 – 348. · Zbl 0279.57011 · doi:10.2307/1970901 · doi.org
[42] Sylvain E. Cappell and Julius L. Shaneson, Fundamental groups, \?-groups, and codimension two submanifolds, Comment. Math. Helv. 51 (1976), no. 3, 437 – 446. · Zbl 0362.57002 · doi:10.1007/BF02568168 · doi.org
[43] Sylvain E. Cappell and Julius L. Shaneson, Submanifolds of codimension two and homology equivalent manifolds, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 2, 19 – 30 (English, with French summary). Colloque International sur l’Analyse et la Topologie Différentielle (Colloq. Internat. CNRS, No. 210, Strasbourg, 1972). · Zbl 0279.57010
[44] Sylvain E. Cappell and Julius L. Shaneson, Piecewise linear embeddings and their singularities, Ann. of Math. (2) 103 (1976), no. 1, 163 – 228. · Zbl 0346.57005 · doi:10.2307/1971003 · doi.org
[45] Sylvain E. Cappell and Julius L. Shaneson, Piecewise linear embeddings and their singularities, Ann. of Math. (2) 103 (1976), no. 1, 163 – 228. · Zbl 0346.57005 · doi:10.2307/1971003 · doi.org
[46] Sylvain E. Cappell and Julius Shaneson, Totally spineless manifolds, Illinois J. Math. 21 (1977), no. 2, 231 – 239. · Zbl 0346.57006
[47] Sylvanin E. Cappell and Julius L. Shaneson, Embeddings and immersions of four-dimensional manifolds in \?\(^{6}\), Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 301 – 303. · Zbl 0467.57009
[48] Sylvain E. Cappell and Julius L. Shaneson, There exist inequivalent knots with the same complement, Ann. of Math. (2) 103 (1976), no. 2, 349 – 353. · Zbl 0338.57008 · doi:10.2307/1970942 · doi.org
[49] Sylvain E. Cappell and Julius L. Shaneson, Topological knots and knot cobordism, Topology 12 (1973), 33 – 40. · Zbl 0268.57006 · doi:10.1016/0040-9383(73)90020-7 · doi.org
[50] A. J. Casson, Lectures on A-manifolds (Lectures given at Cambridge University 1976), Private notes.
[51] A. J. Casson, Lecture at Institute for Advanced Study, 1976.
[52] A. J. Casson, Private communication.
[53] A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 39 – 53. · Zbl 0394.57008
[54] Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois (\Gamma \(_{4}\)=0), Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). · Zbl 0164.24502
[55] Jean Cerf, Groupes d’automorphismes et groupes de difféomorphismes des variétés compactes de dimension 3, Bull. Soc. Math. France 87 (1959), 319 – 329 (French). · Zbl 0099.39106
[56] P. E. Conner and Frank Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc. 83 (1977), no. 1, 36 – 85. · Zbl 0341.57003
[57] P. E. Conner and Frank Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 227 – 264.
[58] P. E. Conner and Frank Raymond, Injective operations of the toral groups. II, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Springer, Berlin, 1972, pp. 109 – 123. Lecture Notes in Math., Vol. 299. · Zbl 0236.57023
[59] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329 – 358.
[60] R. Craggs, Stable equivalence in and surgery presentations for 3-manifolds (preprint). · Zbl 1257.57003
[61] M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), no. 1, 137 – 168 (German). · JFM 41.0543.01 · doi:10.1007/BF01455155 · doi.org
[62] Pierre Deligne, Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 1 – 10 (French).
[63] P. Deligne, Le groupe fondamental du complement d’une courbe plane n’ayant que des points doubles ordinaires est abelian, Séminaire Bourbaki, November 1979.
[64] A. Durfee, 14 characterizations of rational double points (to appear). · Zbl 0545.14001
[65] R. D. Edwards, The double suspension of a certain homology 3-spheres is S5, Notices Amer. Math. Soc. 22 (1975), Abstract #75 T-G33.
[66] R. D. Edwards, Shrinking cell-like decompositions of manifolds (to appear).
[67] James Eells Jr. and Nicolaas H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. (4) 60 (1962), 93 – 110. · Zbl 0119.18704 · doi:10.1007/BF02412768 · doi.org
[68] F. Enriques, Sulla construzione delle funzioni algebriche di due variabili..., Ann. Mat. Pura Appl. IV s. Vol. I. (1923), 185-198. · JFM 50.0674.01
[69] D. B. A. Epstein, Linking spheres, Proc. Cambridge Philos. Soc. 56 (1960), 215 – 219. · Zbl 0094.36006
[70] Roger Fenn, On Dehn’s lemma in 4 dimensions, Bull. London Math. Soc. 3 (1971), 79 – 81. · Zbl 0215.52003 · doi:10.1112/blms/3.1.79 · doi.org
[71] Roger Fenn and Colin Rourke, On Kirby’s calculus of links, Topology 18 (1979), no. 1, 1 – 15. · Zbl 0413.57006 · doi:10.1016/0040-9383(79)90010-7 · doi.org
[72] Ronald Fintushel, Circle actions on simply connected 4-manifolds, Trans. Amer. Math. Soc. 230 (1977), 147 – 171. · Zbl 0362.57014
[73] Ronald Fintushel, Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc. 242 (1978), 377 – 390. · Zbl 0362.57015
[74] Ronald Fintushel and Peter Sie Pao, Identification of certain 4-manifolds with group actions, Proc. Amer. Math. Soc. 67 (1977), no. 2, 344 – 350. · Zbl 0362.57016
[75] L. Ford, Automorphic functions, 2nd ed., Chelsea, New York, 1951. · JFM 55.0810.04
[76] R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120 – 167. · Zbl 1246.57002
[77] David Frank, The signature \?\?\?8, Comment. Math. Helv. 48 (1973), 520 – 524. · Zbl 0284.55024 · doi:10.1007/BF02566138 · doi.org
[78] M. Freedman, Knot theory and 4-dimensional surgery (to appear).
[79] Michael Hartley Freedman, A fake \?³\times \?, Ann. of Math. (2) 110 (1979), no. 1, 177 – 201. · Zbl 0442.57014 · doi:10.2307/1971257 · doi.org
[80] M. Freedman and A. Kirby, Geometric proof of Rohlin’s theorem, Proc. Sympos. Pure. Math. vol. 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 85-97.
[81] William Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), no. 2, 407 – 409. · Zbl 0406.14008 · doi:10.2307/1971204 · doi.org
[82] S. Bloch, I. Dolgachev, and W. Fulton , Algebraic geometry, Lecture Notes in Mathematics, vol. 1479, Springer-Verlag, Berlin, 1991. · Zbl 0742.00065
[83] William Fulton and Johan Hansen, A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. of Math. (2) 110 (1979), no. 1, 159 – 166. · Zbl 0389.14002 · doi:10.2307/1971249 · doi.org
[84] David E. Galewski and Ronald J. Stern, Classification of simplicial triangulations of topological manifolds, Bull. Amer. Math. Soc. 82 (1976), no. 6, 916 – 918. · Zbl 0358.57007
[85] David E. Galewski and Ronald J. Stern, Simplicial triangulations of topological manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 7 – 12. · Zbl 0511.57015
[86] Murray Gerstenhaber and Oscar S. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1531 – 1533. · Zbl 0112.02504
[87] Herman Gluck, The embedding of two-spheres in the four-sphere, Bull. Amer. Math. Soc. 67 (1961), 586 – 589. · Zbl 0173.51402
[88] C. McA. Gordon, Knots, homology spheres, and contractible 4-manifolds, Topology 14 (1975), 151 – 172. · Zbl 0304.57003 · doi:10.1016/0040-9383(75)90024-5 · doi.org
[89] C. McA. Gordon, Knots in the 4-sphere, Comment. Math. Helv. 51 (1976), no. 4, 585 – 596. · Zbl 0346.55004 · doi:10.1007/BF02568175 · doi.org
[90] C. McA. Gordon, Some higher-dimensional knots with the same homotopy groups, Quart. J. Math. Oxford Ser. (2) 24 (1973), 411 – 422. · Zbl 0263.57005 · doi:10.1093/qmath/24.1.411 · doi.org
[91] Lucien Guillou and Alexis Marin, Une extension d’un théorème de Rohlin sur la signature, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 3, A95 – A98. · Zbl 0361.57018
[92] John Harer, On handlebody structures for hypersurfaces in \?³ and \?\?³, Math. Ann. 238 (1978), no. 1, 51 – 58. · Zbl 0384.57016 · doi:10.1007/BF01351453 · doi.org
[93] J. Harer and A. Casson (to appear).
[94] J. Harer, A. Kas and R. C. Kirby (to appear).
[95] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. · Zbl 0345.57001
[96] Hugh M. Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of \?³, Bull. Amer. Math. Soc. 80 (1974), 1243 – 1244. · Zbl 0298.55001
[97] Morris W. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc. 69 (1963), 352 – 356. · Zbl 0112.14602
[98] Morris W. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comment. Math. Helv. 36 (1961), 103 – 111. · Zbl 0101.16101 · doi:10.1007/BF02566895 · doi.org
[99] Morris W. Hirsch, On embedding 4-manifolds in \?\(^{7}\), Proc. Cambridge Philos. Soc. 61 (1965), 657 – 658. · Zbl 0142.22204
[100] Morris W. Hirsch, On imbedding differentiable manifolds in euclidean space, Ann. of Math. (2) 73 (1961), 566 – 571. · Zbl 0123.16701 · doi:10.2307/1970318 · doi.org
[101] Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242 – 276. · Zbl 0113.17202
[102] Morris W. Hirsch and Barry Mazur, Smoothings of piecewise linear manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 80. · Zbl 0298.57007
[103] F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0138.42001
[104] F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau; Lecture Notes in Pure and Applied Mathematics, Vol. 4. · Zbl 0226.57001
[105] Wu-chung Hsiang and Julius L. Shaneson, Fake tori, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 18 – 51. · Zbl 0288.57006
[106] W.-c. Hsiang and J. L. Shaneson, Fake tori, the annulus conjecture, and the conjectures of Kirby, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 687 – 691. · Zbl 0174.26404
[107] W. C. Hsiang and R. H. Szczarba, On embedding surfaces in four-manifolds, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 97 – 103.
[108] Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. · Zbl 0144.44804
[109] William H. Jaco and Peter B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. · Zbl 0471.57001 · doi:10.1090/memo/0220 · doi.org
[110] Steve J. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979), 237 – 263. · Zbl 0426.57009
[111] Arnold Kas, Weierstrass normal forms and invariants of elliptic surfaces, Trans. Amer. Math. Soc. 225 (1977), 259 – 266. · Zbl 0402.14014
[112] A. Kas, On the deformation types of regular elliptic surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 107 – 111. · Zbl 0351.14017
[113] Mitsuyoshi Kato, A concordance classification of \?\? homeomorphisms of \?^\?\times \?^\?, Topology 8 (1969), 371 – 383. · Zbl 0205.53302 · doi:10.1016/0040-9383(69)90023-8 · doi.org
[114] Michel A. Kervaire and John W. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651 – 1657. · Zbl 0107.40303
[115] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504 – 537. · Zbl 0115.40505 · doi:10.2307/1970128 · doi.org
[116] Robion Kirby, A calculus for framed links in \?³, Invent. Math. 45 (1978), no. 1, 35 – 56. · Zbl 0377.55001 · doi:10.1007/BF01406222 · doi.org
[117] Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273 – 312. · Zbl 0394.57002
[118] R. C. Kirby, Some conjectures about four-manifolds, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 79 – 84. · Zbl 0223.57004
[119] Robion C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575 – 582. · Zbl 0176.22004 · doi:10.2307/1970652 · doi.org
[120] R. C. Kirby, Private notes.
[121] Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. · Zbl 0361.57004
[122] R. C. Kirby and L. C. Siebenmann, Some theorems on topological manifolds, Manifolds – Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 1 – 7. · Zbl 0216.45203
[123] Kazuaki Kobayashi, On a homotopy version of 4-dimensional Whitney’s lemma, Math. Sem. Notes Kobe Univ. 5 (1977), no. 1, 109 – 116. · Zbl 0361.57015
[124] K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111 – 152. · Zbl 0098.13004 · doi:10.2307/1969881 · doi.org
[125] K. Kodaira, On the structure of compact complex analytic surfaces. I, II, IV, Amer. J. Math. 86 (1964), 781-798; 88 (1966), 682-721; 90 (1968), 1048-1066. · Zbl 0137.17501
[126] Kunihiko Kodaira, On homotopy \? 3 surfaces, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 58 – 69. · Zbl 0212.28403
[127] Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. · Zbl 0103.15101
[128] R. Lashof, The immersion approach to triangulation and smoothing. I. Lees’ immersion theorem, Proc. Advanced Study Inst. on Algebraic Topology (Aarhus, 1970) Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 282 – 322. R. Lashof, The immersion approach to triangulation and smoothing. II. Triangulations and smoothings, Proc. Advanced Study Inst. on Algebraic Topology (Aarhus, 1970) Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 323 – 355. · Zbl 0232.57014
[129] R. Lashof and M. Rothenberg, Triangulation of manifolds. I, II, Bull. Amer. Math. Soc. 75 (1969), 750 – 754; ibid. 75 (1969), 755 – 757. · Zbl 0189.54703
[130] R. Lashof and M. Rothenberg, Microbundles and smoothing, Topology 3 (1965), 357 – 388. · Zbl 0141.40601 · doi:10.1016/0040-9383(65)90003-0 · doi.org
[131] R. Lashof and J. L. Shaneson, Smoothing 4-manifolds, Invent. Math. 14 (1971), 197 – 210. · Zbl 0241.57008 · doi:10.1007/BF01418889 · doi.org
[132] Richard K. Lashof and Julius L. Shaneson, Classification of knots in codimension two, Bull. Amer. Math. Soc. 75 (1969), 171 – 175. · Zbl 0198.28701
[133] François Laudenbach and Valentin Poénaru, A note on 4-dimensional handlebodies, Bull. Soc. Math. France 100 (1972), 337 – 344. · Zbl 0242.57015
[134] Henry B. Laufer, Normal two-dimensional singularities, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 71. · Zbl 0245.32005
[135] Terry Lawson, Trivializing \?-cobordisms by stabilization, Math. Z. 156 (1977), no. 3, 211 – 215. · Zbl 0344.57011 · doi:10.1007/BF01214409 · doi.org
[136] Terry Lawson, Trivializing 5-dimensional \?-cobordisms by stabilization, Manuscripta Math. 29 (1979), no. 2-4, 305 – 321. · Zbl 0413.57025 · doi:10.1007/BF01303633 · doi.org
[137] Terry Lawson, Decomposing 5-manifolds as doubles, Houston J. Math. 4 (1978), no. 1, 81 – 84. · Zbl 0384.57017
[138] J. Alexander Lees, The surgery obstruction groups of C. T. C. Wall, Advances in Math. 11 (1973), 113 – 156. · Zbl 0262.57014 · doi:10.1016/0001-8708(73)90005-4 · doi.org
[139] S. Lefschetz, L analysis situs et la géometrie algébrique, Paris, 1924. · JFM 50.0663.01
[140] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531 – 540. · Zbl 0106.37102 · doi:10.2307/1970373 · doi.org
[141] S. J. Lomonaco, The homotopy groups of knots. I, II (to appear). · Zbl 0483.57012
[142] D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327 – 337. · Zbl 0117.17102 · doi:10.2307/1970548 · doi.org
[143] Mark Mahowald, The order of the image of the \?-homomorphisms, Bull. Amer. Math. Soc. 76 (1970), 1310 – 1313. · Zbl 0212.28401
[144] Richard Mandelbaum, Irrational connected sums and the topology of algebraic surfaces, Trans. Amer. Math. Soc. 247 (1979), 137 – 156. · Zbl 0405.57020
[145] Richard Mandelbaum, On the topology of elliptic surfaces, Studies in algebraic topology, Adv. in Math. Suppl. Stud., vol. 5, Academic Press, New York-London, 1979, pp. 143 – 166. · Zbl 0483.14004
[146] Richard Mandelbaum, Special handlebody decompositions of simply connected algebraic surfaces, Proc. Amer. Math. Soc. 80 (1980), no. 2, 359 – 362. · Zbl 0448.57004
[147] Richard Mandelbaum, Decomposing analytic surfaces, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 147 – 217.
[148] R. Mandelbaum, (to appear).
[149] R. Mandelbaum and B. Moishezon, On the topological structure of non-singular algebraic surfaces in \?\?³, Topology 15 (1976), no. 1, 23 – 40. · Zbl 0323.57005 · doi:10.1016/0040-9383(76)90047-1 · doi.org
[150] R. Mandelbaum and B. Moislezon, On the topology of algebraic surfaces, Trans. Amer. Math. Soc. (to appear).
[151] R. Mandelbaum and B. Moislezon, Numerical link invariants (preprint).
[152] W. S. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143 – 156. · Zbl 0198.56701
[153] Y. Matsumoto, An elementary proof of Rohlin’s Signature Theorem and its extension by Guillou and Marin, Notes, IAS Geometric Topology Seminar.
[154] Yukio Matsumoto, A 4-manifold which admits no spine, Bull. Amer. Math. Soc. 81 (1975), 467 – 470. · Zbl 0305.57012
[155] Y. Matsumoto, Some wild embeddings of S1 \times S (to appear).
[156] Yukio Matsumoto, Secondary intersectional properties of 4-manifolds and Whitney’s trick, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 99 – 107. · Zbl 0394.55010
[157] Yukio Matsumoto and Gerard A. Venema, Failure of the Dehn lemma on contractible 4-manifolds, Invent. Math. 51 (1979), no. 3, 205 – 218. · Zbl 0389.57004 · doi:10.1007/BF01389914 · doi.org
[158] T. Matumoto, Variétés simpliciales d’homologie et variétés topologiques metrisable, Thèse Univ. de Paris-Sud Orsay, 1976.
[159] Barry Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221 – 228. · Zbl 0127.13604 · doi:10.2307/1970288 · doi.org
[160] John Milnor, On simply connected 4-manifolds, Symposium internacional de topología algebraica International symposi um on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122 – 128. · Zbl 0105.17204
[161] J. Milnor, Differentiable manifolds which are homotopy spheres (Unpublished Notes, Princeton, 1959). · Zbl 0106.37001
[162] John Milnor, A procedure for killing homotopy groups of differentiable manifolds., Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I, 1961, pp. 39 – 55. · Zbl 0118.18601
[163] John Milnor, Lectures on the \?-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. · Zbl 0161.20302
[164] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358 – 426. · Zbl 0147.23104
[165] John Milnor and Dale Husemoller, Symmetric bilinear forms, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. · Zbl 0292.10016
[166] John W. Milnor and Michel A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 454 – 458.
[167] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. · Zbl 0298.57008
[168] Yoichi Miyaoka, On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977), 225 – 237. · Zbl 0374.14007 · doi:10.1007/BF01389789 · doi.org
[169] Edwin E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96 – 114. · Zbl 0048.17102 · doi:10.2307/1969769 · doi.org
[170] T. Matumoto and L. Siebenmann, The topological \?-cobordism theorem fails in dimension 4 or 5, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 1, 85 – 87. · Zbl 0411.57034 · doi:10.1017/S0305004100054918 · doi.org
[171] Boris Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Mathematics, Vol. 603, Springer-Verlag, Berlin-New York, 1977. With an appendix by R. Livne. · Zbl 0392.32015
[172] José M. Montesinos, A representation of closed orientable 3-manifolds as 3-fold branched coverings of \?³, Bull. Amer. Math. Soc. 80 (1974), 845 – 846. · Zbl 0292.57003
[173] José María Montesinos, 4-manifolds, 3-fold covering spaces and ribbons, Trans. Amer. Math. Soc. 245 (1978), 453 – 467. · Zbl 0359.55002
[174] José María Montesinos, Heegaard diagrams for closed 4-manifolds, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 219 – 237.
[175] José M. Montesinos, Three-manifolds as 3-fold branched covers of \?³, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 85 – 94. · Zbl 0326.57002 · doi:10.1093/qmath/27.1.85 · doi.org
[176] G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. · Zbl 0265.53039
[177] James R. Munkres, Elementary differential topology, Lectures given at Massachusetts Institute of Technology, Fall, vol. 1961, Princeton University Press, Princeton, N.J., 1966. · Zbl 0161.20201
[178] James R. Munkres, Concordance is equivalent to smoothability, Topology 5 (1966), 371 – 389. · Zbl 0147.23602 · doi:10.1016/0040-9383(66)90029-2 · doi.org
[179] R. A. Norman, Dehn’s lemma for certain 4-manifolds, Invent. Math. 7 (1969), 143 – 147. · Zbl 0181.51602 · doi:10.1007/BF01389797 · doi.org
[180] S. P. Novikov, Homotopically equivalent smooth manifolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 365 – 474 (Russian). · Zbl 0151.32103
[181] Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. · Zbl 0263.57001
[182] Peter Orlik and Frank Raymond, Actions of the torus on 4-manifolds. I, Trans. Amer. Math. Soc. 152 (1970), 531 – 559. · Zbl 0216.20202
[183] Peter Orlik and Frank Raymond, Actions of the torus on 4-manifolds. II, Topology 13 (1974), 89 – 112. · Zbl 0287.57017 · doi:10.1016/0040-9383(74)90001-9 · doi.org
[184] C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1 – 26. · Zbl 0078.16402 · doi:10.2307/1970113 · doi.org
[185] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281 – 299. · Zbl 0078.16305 · doi:10.1112/plms/s3-7.1.281 · doi.org
[186] Peter Sie Pao, The topological structure of 4-manifolds with effective torus actions. I, Trans. Amer. Math. Soc. 227 (1977), 279 – 317. · Zbl 0343.57023
[187] Peter Sie Pao, The topological structure of 4-manifolds with effective torus actions. II, Illinois J. Math. 21 (1977), no. 4, 883 – 894. · Zbl 0396.57002
[188] H. Pittie, Complex and almost complex four-manifolds, Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975) Internat. Atomic Energy Agency, Vienna, 1976, pp. 121 – 131. · Zbl 0345.53020
[189] L. S. Pontryagin, Smooth manifolds and their applications in homotopy theory, American Mathematical Society Translations, Ser. 2, Vol. 11, American Mathematical Society, Providence, R.I., 1959, pp. 1 – 114. · Zbl 0084.19002
[190] F. Quinn, A stable Whitney trick in dimension four (to appear).
[191] C. P. Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69 – 88. · Zbl 0218.14021 · doi:10.2307/1970735 · doi.org
[192] A. Ranicki, On algebraic L-theory. Parts I, II, Proc. London Math. Soc. 27 (1973), pp. 101-125; 126-158; Part III, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 1973. · Zbl 0278.18008
[193] M. Reid, Article On Bogomolov’s Theorem (preprint).
[194] Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. · Zbl 0339.55004
[195] V. A. Rohlin, New results in the theory of four-dimensional manifolds, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 221 – 224 (Russian).
[196] V. A. Rohlin, Two-dimensional submanifolds of four-dimensional manifolds, Funkcional. Anal. i Priložen. 5 (1971), no. 1, 48 – 60 (Russian).
[197] V. A. Rohlin, Proof of a conjecture of Gudkov, Funkcional. Anal. i Priložen. 6 (1972), no. 2, 62 – 64 (Russian).
[198] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. · Zbl 0254.57010
[199] J. H. Rubinstein, Private correspondence.
[200] Lee Rudolph, A Morse function for a surface in \?\?³, Topology 14 (1975), no. 4, 301 – 303. · Zbl 0315.57020 · doi:10.1016/0040-9383(75)90013-0 · doi.org
[201] Eugénia César de Sá, A link calculus for 4-manifolds, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 16 – 30. · Zbl 0409.57032
[202] Martin Scharlemann, Constructing strange manifolds with the dodecahedral space, Duke Math. J. 43 (1976), no. 1, 33 – 40. · Zbl 0331.57007
[203] Martin Scharlemann, Equivalence of 5-dimensional \?-cobordisms, Proc. Amer. Math. Soc. 53 (1975), no. 2, 508 – 510. · Zbl 0285.57020
[204] Martin G. Scharlemann, Transversality theories at dimension four, Invent. Math. 33 (1976), no. 1, 1 – 14. · Zbl 0318.57007 · doi:10.1007/BF01425502 · doi.org
[205] H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147 – 238 (German). · Zbl 0006.08304 · doi:10.1007/BF02398271 · doi.org
[206] J. P. Serre, Cours d’arithmétique, Presses Universitaires de France. · Zbl 0376.12001
[207] Jean-Pierre Serre, Formes bilinéaires symétriques entières à discriminant \pm 1, Séminaire Henri Cartan, 1961/62, Exp. 14-15, Secrétariat mathématique, Paris, 1961/1962, pp. 16 (French).
[208] Francesco Severi, Intorno ai punti doppi improprî di una superficie generale dello spazio a quattro dimensioni, e a’ suoi punti tripli apparenti, Rend. Cire. Mat. Palermo 15 (1901), 33-51; correction, ibid., p. 160. · JFM 32.0648.04
[209] Francesco Severi, Sulla deficienza delia serie caratteristica di un sistema lineare di curve appartenenti ad una superficie algebrica, Atti. Reale Accad. Lincei Rend. (5) 12 (1903), no. 2, 250-257. · JFM 34.0677.03
[210] I. R. Shafarevitch, Basic algebraic geometry, Springer-Verlag, Berlin and New York, 1975.
[211] I. R. Šafarevič, B. G. Averbuh, Ju. R. Vaĭnberg, A. B. Žižčenko, Ju. I. Manin, B. G. Moĭšezon, G. N. Tjurina, and A. N. Tjurin, Algebraic surfaces, Trudy Mat. Inst. Steklov. 75 (1965), 1 – 215 (Russian).
[212] Julius L. Shaneson, Non-simply-connected surgery and some results in low dimensional topology, Comment. Math. Helv. 45 (1970), 333 – 352. · Zbl 0207.53803 · doi:10.1007/BF02567336 · doi.org
[213] Julius L. Shaneson, On non-simply-connected manifolds, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 221 – 229. · Zbl 0226.57007
[214] Julius L. Shaneson, Wall’s surgery obstruction groups for \?\times \?, Ann. of Math. (2) 90 (1969), 296 – 334. · Zbl 0182.57303 · doi:10.2307/1970726 · doi.org
[215] Julius L. Shaneson, Hermitian \?-theory in topology, Algebraic \?-theory, III: Hermitian \?-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 1 – 40. Lecture Notes in Math., Vol. 343.
[216] L. C. Siebenmann, Disruption of low-dimensional handlebody theory by Rohlin’s theorem., Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 57 – 76.
[217] L. C. Siebenmann, Are nontriangulable manifolds triangulable?, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 77 – 84. · Zbl 0297.57012
[218] L. C. Siebenmann, Topological manifolds, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 133 – 163. · Zbl 0224.57001
[219] L. C. Siebenmann, Lecture at the Institute of Advanced Study, 1977.
[220] L. C. Siebenmann, Amorces de la chirugie en dimension quatre: Un S3 \times R exotique, [d’après A. H. Casson and M. H. Freedman] Séminaire Bourbaki 1978/79 Feb. 1979, pp. 536-01 to 536-25.
[221] Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391 – 406. · Zbl 0099.39202 · doi:10.2307/1970239 · doi.org
[222] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303
[223] E. Spanier, The homology of Kummer manifolds, Proc. Amer. Math. Soc. 7 (1956), 155 – 160. · Zbl 0070.18105
[224] J. R. Stallings, Notes on polyhedral topology, Tata Institute of Fundamental Research, Bombay, 1968. · Zbl 0182.26203
[225] John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12 – 19. · Zbl 0094.36103 · doi:10.2307/1970146 · doi.org
[226] J. R. Stallings, Group theory and three dimensional manifold, Yale Univ. Press, New Haven, Conn., 1972.
[227] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103
[228] D. Sullivan, Thesis, Princeton, 1965.
[229] D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, Geometric Topology Seminar Notes, Princeton Univ. 1967.
[230] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17 – 86 (French). · Zbl 0057.15502 · doi:10.1007/BF02566923 · doi.org
[231] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251 – 264. · Zbl 0191.54703
[232] Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56 – 88. · Zbl 0157.30603 · doi:10.2307/1970594 · doi.org
[233] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131 – 140. · Zbl 0121.18101 · doi:10.1112/jlms/s1-39.1.131 · doi.org
[234] C. T. C. Wall, On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141 – 149. · Zbl 0131.20701 · doi:10.1112/jlms/s1-39.1.141 · doi.org
[235] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. · Zbl 0219.57024
[236] C. T. C. Wall, Foundations of algebraic \?-theory, Algebraic \?-theory, III: Hermitian \?-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 266 – 300. Lecture Notes in Math., Vol. 343.
[237] C. T. C. Wall, On homotopy tori and the annulus theorem, Bull. London Math. Soc. 1 (1969), 95 – 97. · Zbl 0176.22002 · doi:10.1112/blms/1.1.95 · doi.org
[238] C. T. C. Wall, Locally flat \?\? submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5 – 8. · Zbl 0166.19803
[239] C. T. C. Wall, Some \? groups of finite groups, Bull. Amer. Math. Soc. 79 (1973), 526 – 529. · Zbl 0262.16027
[240] C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328 – 338. · Zbl 0109.03305 · doi:10.1007/BF01440955 · doi.org
[241] Andrew H. Wallace, Homology theory on algebraic varieties, International Series of Monographs on Pure and Applied Mathematics. Vol. 6, Pergamon Press, New York-London-Paris-Los Angeles, 1958. · Zbl 0100.16303
[242] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. 6 (1935), 268-279. · Zbl 0013.08103
[243] J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comment. Math. Helv. 22 (1949), 48 – 92. · Zbl 0036.12704 · doi:10.1007/BF02568048 · doi.org
[244] Hassler Whitney, The self-intersections of a smooth \?-manifold in 2\?-space, Ann. of Math. (2) 45 (1944), 220 – 246. · Zbl 0063.08237 · doi:10.2307/1969265 · doi.org
[245] Hassler Whitney, On the topology of differentiable manifolds, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 101 – 141. · Zbl 0063.08233
[246] Shing Tung Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798 – 1799. · Zbl 0355.32028
[247] Oscar Zariski, An introduction to the theory of algebraic surfaces, Lecture Notes in Mathematics, Vol. 83, Springer-Verlag, Berlin-New York, 1972. Second printing; Notes by James Cohn. · Zbl 0241.14003
[248] Oscar Zariski, Introduction to the problem of minimal models in the theory of algebraic surfaces, Publications of the Mathematical Society of Japan, no. 4, The Mathematical Society of Japan, Tokyo, 1958. · Zbl 0093.33904
[249] Oscar Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math. 51 (1929), no. 2, 305 – 328. · JFM 55.0806.01 · doi:10.2307/2370712 · doi.org
[250] Oscar Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. (2) 38 (1937), no. 1, 131 – 141. · Zbl 0016.04102 · doi:10.2307/1968515 · doi.org
[251] E. C. Zeeman, Seminar on combinatorial topology, Mimeo, I.H.E.S., Bures-Sur-Yvette and Univ. of Warwick, 1963. · Zbl 0179.52402
[252] E. C. Zeeman, The Poincaré conjecture for \?\ge 5, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 198 – 204. · Zbl 1246.57032
[253] E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341 – 358. · Zbl 0116.40801 · doi:10.1016/0040-9383(63)90014-4 · doi.org
[254] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471 – 495. · Zbl 0134.42902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.