Spectral methods for problems in complex geometries. (English) Zbl 0476.65078


65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35K05 Heat equation
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
Full Text: DOI


[1] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods, () · Zbl 0561.76076
[2] Majda, A.; McDonough, J.; Osher, S., Math. comput., 32, 1041, (1978)
[3] Orszag, S.A., Stud. appl. math., 50, 293, (1971)
[4] {\scS. A. Orszag}, to be published.
[5] Orszag, S.A.; Israeli, M., Ann. rev. fluid mech., 6, 281, (1974)
[6] Gear, C.W., Numerical initial value problems in ordinary differential equations, (1971), Prentice-Hall Englewood Cliffs, N.J · Zbl 0217.21701
[7] Oliger, J., Math. comput., 28, 15, (1974)
[8] {\scE. Turkel and D. Gottlieb}, Stud. Appl. Math., in press.
[9] Thompson, J.F.; Thames, F.C.; Mastin, C.W., J. comput. phys., 15, 299, (1974)
[10] Varga, R.S., Matrix iterative analysis, (1962), Prentice-Hall Englewood Cliffs, N.J · Zbl 0133.08602
[11] Hestenes, M.R.; Stiefel, E., J. res. nat. bur. stand., 49, 409, (1952)
[12] D’Yakonov, E.G., Dokl. akad. nauk SSSR, 138, 522, (1961)
[13] Keller, H.B.; Cebeci, T., (), 92
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.