×

Global solution of the initial value problem for a discrete velocity model of the Boltzmann equation. (English) Zbl 0476.76071


MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. E. Broadwell: Shock structure in a simple discrete velocity gas. Phys. of Fluids, 7, 1243-1247 (1964). · Zbl 0123.21102 · doi:10.1063/1.1711368
[2] H. Cabannes: Solution globale du probleme de Cauchy en theorie cinetique discrete. J. de Mecanique, 17, 1-22 (1978). · Zbl 0439.76064
[3] R. Gatignol: Theorie cinetique de gaz a repartition discrete de vitesses, Lect. Notes in Phys., vol. 36, Springer-Verlag, New York (1975).
[4] T. Nishida and M. Mimura: On the Broadwell’s model for a simple discrete velocity gas. Proc. Japan Acad., 50, 812-817 (1974). · Zbl 0326.35051 · doi:10.3792/pja/1195518755
[5] L. Tartar: Existence globale pour un systeme hyperbolique semi-lineaire de la theorie cinetique des gaz. Ecole Polytechnique, Seminaire Goulaouic-Schwartz, 28 octobre 1975. · Zbl 0336.35069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.