Regularity theorems for Maxwell’s equations. (English) Zbl 0477.35020


35B65 Smoothness and regularity of solutions to PDEs
35G15 Boundary value problems for linear higher-order PDEs
78A25 Electromagnetic theory (general)
35Q99 Partial differential equations of mathematical physics and other areas of application
78A45 Diffraction, scattering
Full Text: DOI


[1] Agmon, Lectures on Elliptic Boundary Value Problems (1965)
[2] Leis, Zur Theorie der zeitunabhängigen Maxwellschen Gleichungen, Gesellsch. f. Mathematik u. Datenverarb. Bonn Nr. 50 (1971) · Zbl 0227.35077
[3] Lions, Inequalities in Mechanics and Physics (1976)
[4] Müller, Grundprobleme der mathematischen Theorie elektromagnetischer Schwingungen (1957) · Zbl 0087.21305
[5] Picard , R. Zur Existenz des Wellenoperators bei Anfangsrandwertproblemen vom Maxwell-Typ 1977 · Zbl 0346.35087
[6] Weber , C. Hilbertraummethoden zur Untersuchung der Beugung elektromagnetischer Wellen an Dielektrika 1977
[7] Weber, A Local Compactness Theorem for Maxwell’s Equations, Math. Meth. in the Appl. Sci. 2 pp 12– (1980) · Zbl 0432.35032
[8] Weck, Maxwell’s boundary value problem on Riemannian manifolds with smooth boundaries, J. Math. Anal. Appl. 46 pp 410– (1974) · Zbl 0281.35022
[9] Werner, On the exterior boundary value problem of perfect reflection for stationary electromagnetic wave fields, J. Math. Anal. Appl. 7 pp 348– (1963) · Zbl 0118.43501
[10] Werner, Randwertprobleme für die zeitunabhängigen Maxwellschen Gleichungen mit variablen Koeffizienten, Arch. Rat. Mech. An. 18 (3) pp 167– (1965) · Zbl 0142.37501
[11] Willmore, An Introduction to Differential Geometry (1969) · Zbl 0086.14401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.