×

Inversion of analytic matrices and local solvability of some invariant differential operators on nilpotent Lie groups. (English) Zbl 0477.58032


MSC:

58J10 Differential complexes
43A80 Analysis on other specific Lie groups
22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Atiyah M. F., Comm. Pure Appl. Math 23 pp 145– (1970) · Zbl 0188.19405
[2] Corwin L., Trans. A.M.S.
[3] Corwin L., Tr. Vsesoyuzn. matem. s’ezda
[4] Duflo M., Ann. Scient. Ec. Norm. Sup 10 pp 265– (1977)
[5] Folland G., Comm. Pure Appl. Math 22 pp 429– (1974) · Zbl 0293.35012
[6] Geller D., Comm. P.D.E 5 (5) pp 475– (1980) · Zbl 0488.22020
[7] Greiner P., Proc. Natl. Acad. Sci. USA 72 (9) pp 3287– (1975) · Zbl 0308.35017
[8] Helffer B., Comm. P.D.E 4 (8) pp 899– (1979) · Zbl 0423.35040
[9] B. Helffer et J. Nourrigat, Théorèmes d’indice pour des opérateurs différentiels a coefficients polynomiaux, (preprint).
[10] Hörmander L., Linear partial differential equations (1969)
[11] Kato T., Perturbation theory for linear operators (1966) · Zbl 0148.12601
[12] Kirillov A. A., Usp. Mat. Nauk 17 pp 57– (1962)
[13] p. Lévy-Bruhl, Résolubilité locale de cértains operateurs invariants du second ordre sur les groupes de Lie nilpotent de rang deux, (preprint).
[14] Lewy H., Ann. Math 66 pp 155– (1957) · Zbl 0078.08104
[15] Lion G., C.R. Acad. Sc. Paris 29 pp 271– (1980)
[16] Lojasiewicz S., Studia Math 18 pp 87– (1959)
[17] Métivier G., Duke Math. J 47 (1) pp 195– (1980) · Zbl 0433.35015
[18] Raïs M., C.R. Acad. Sci. Paris 273 (1) pp 495– (1971)
[19] Rellich F., Math. Ann (1) pp 113– (1937)
[20] Rockland C., Trans. Amer. Math. Soc 240 (517) pp 1– (1978)
[21] Rothschild L.P., proc. A.M.S 74 (2) pp 383– (1979)
[22] Rothschild L.P., Arkiv för Mat
[23] Rothschild L.P., Acta. Math 137 (2) pp 247– (1976) · Zbl 0346.35030
[24] Rouvière F., Ann. Scuoia Norm. Sup. Pisa, Ser. IV (2) pp 231– (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.