Finite element subspaces with optimal rates of convergence for the stationary Stokes problem. (English) Zbl 0477.65084


65Z05 Applications to the sciences
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
Full Text: DOI EuDML


[1] 1. M. BERCOVIER and M. ENGELMAN, A finite element for the numerical solution of viscous incompressible flows, J . Comp. Phys., 30 (1979), 181-201. Zbl0395.76040 MR528199 · Zbl 0395.76040 · doi:10.1016/0021-9991(79)90098-6
[2] 2. G. BIRKHOFF, Tricubic polynomial interpolation, Proc. Natl Acad. Sel 68 (1971),1162-64. Zbl0242.41007 MR299982 · Zbl 0242.41007 · doi:10.1073/pnas.68.6.1162
[3] 3. G. IRKHOFF and L. MANSFIELD, Compatible triangular finite éléments, J . Math. Anal Appl., 47 (1974), 531-53. Zbl0284.35021 MR359353 · Zbl 0284.35021 · doi:10.1016/0022-247X(74)90006-7
[4] 4. J. H. BRAMBLE and M. ZLAMAL, Triangular elements in the fînite element method, Math. Comp., 24 (1970), 809-20, Zbl0226.65073 MR282540 · Zbl 0226.65073 · doi:10.2307/2004615
[5] 5. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in R n with applications to finite éléments methods, rch. Raîional Mech. Anal, 46(1972), 177-99, Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[6] 6. P. G. CIARLET and P. A. RAVIART, The combined effect of curved boundaries and numerical intergration in isoparametric finite element methods, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, ed. Academic Press, New York, 1972, pp. 409-74. Zbl0262.65070 MR421108 · Zbl 0262.65070
[7] 7. M. CROUZEIX and P. A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, R.A.I.R.O., 7 (1973), 33-76. Zbl0302.65087 MR343661 · Zbl 0302.65087
[8] 8. V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier Stokes Equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, 1979. Zbl0413.65081 MR548867 · Zbl 0413.65081 · doi:10.1007/BFb0063447
[9] 9. P. JAMET and P. A. RAVIART, Numerical solution of the stationary Navier-Stokes equations by finite element methods, Lecture Notes in Computer Science, Springer Verlag, 10, 192-223. Zbl0285.76007 MR448951 · Zbl 0285.76007
[10] 10. L. MANSFIELD, Higher order compatible triangular finite elements, Numer. Math., 22 (1974), 89-97. Zbl0265.65011 MR351040 · Zbl 0265.65011 · doi:10.1007/BF01436723
[11] 11. L. MANSFIELD, Interpolation to boundary data in tetrahedra with applications to compatible finite éléments, J. Math. Anal Appl., 56 (1976), 137-64. Zbl0361.41002 MR423757 · Zbl 0361.41002 · doi:10.1016/0022-247X(76)90013-5
[12] 12. A. H. STROUD, Approximate Calculation of Multiple Intégrais, Prentice Hall, Englewood Cliffs, N. J., 1971. Zbl0379.65013 MR327006 · Zbl 0379.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.