zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and characterization of efficient decisions with respect to cones. (English) Zbl 0477.90076

90C31Sensitivity, stability, parametric optimization
52A20Convex sets in $n$ dimensions (including convex hypersurfaces)
Full Text: DOI
[1] K.J. Arrow, E.W. Barankin and D. Blackwell, ”Admissible points of convex sets”, in: H.W. Kuhn and A.W. Tucker, eds.,Contributions to the theory of games (Princeton University Press, Princeton, NJ, 1953) 87--91. · Zbl 0050.14203
[2] H.P. Benson, ”An improved definition of proper efficiency for vector maximization with respect to cones”,Journal of Mathematical Analysis and Applications 71 (1979) 232--241. · Zbl 0418.90081 · doi:10.1016/0022-247X(79)90226-9
[3] G.R. Bitran and T.L. Magnanti, ”The structure of admissible points with respect to cone dominance”,Journal of Optimization Theory and Applications 29 (1979) 573--614. · Zbl 0389.52021 · doi:10.1007/BF00934453
[4] J.M. Borwein, ”The geometry of Pareto efficiency over cones”,Mathematische Operations-forschung und Statistik, Series Optimization 11 (1980) 235--248. · Zbl 0447.90077
[5] J.M. Borwein, ”Proper efficient points for maximization with respect to cones”,SIAM Journal on Control and Optimization 15 (1977) 57--63. · Zbl 0369.90096 · doi:10.1137/0315004
[6] T.A. Brown and R.E. Strauch, ”Dynamic programming in multiplicative lattices”,Journal of Mathematical Analysis and Applications 12 (1965) 364--370. · Zbl 0132.40303 · doi:10.1016/0022-247X(65)90045-4
[7] R. Hartley, ”On cone-efficiency, cone-convexity, and cone compactness”,SIAM Journal on Applied Mathematics 34 (1978) 211--222. · Zbl 0379.90005 · doi:10.1137/0134018
[8] H.W. Kuhn and A.W. Tucker, ”Nonlinear programming”, in: J. Neyman, ed.,Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, 1951). · Zbl 0044.05903
[9] R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, NJ, 1972). · Zbl 0224.49003
[10] P.L. Yu, ”Cone convexity, cone extreme-points, and nondominated solutions in decisions problems with multi-objectives”,Journal of Optimization Theory Applications 14 (1974) 319--377. · Zbl 0268.90057 · doi:10.1007/BF00932614
[11] P.L. Yu and M. Zeleney, ”The set of all nondominated solutions in linear cases and a multicriteria simplex method”,Journal of Mathematical Analysis Applications 49 (1975) 430--468. · Zbl 0313.65047 · doi:10.1016/0022-247X(75)90189-4