×

zbMATH — the first resource for mathematics

Riemann-Roch theorems for higher algebraic K-theory. (English) Zbl 0478.14010

MSC:
14C40 Riemann-Roch theorems
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
20G10 Cohomology theory for linear algebraic groups
14F20 Étale and other Grothendieck topologies and (co)homologies
14F35 Homotopy theory and fundamental groups in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, J.F., Stable homotopy and generalized homology, (1971), University of Chicago lecture notes · Zbl 0309.55016
[2] Baum, P.; Fulton, W.; MacPherson, R., Riemann-Roch for singular varieties, Publ. math. IHES, No. 45, 101-145, (1975) · Zbl 0332.14003
[3] Baum, P.; Fulton, W.; MacPherson, R., Riemann-Roch and topological K-theory for singular varieties, Acta. math., 143, (1979) · Zbl 0474.14004
[4] Bloch, S., Algebraic K-theory and crystalline cohomology, Publ. math. IHES, No. 47, 187-268, (1978) · Zbl 0388.14010
[5] Bloch, S.; Ogus, A., Gersten’s conjecture and the homology of schemes, Ann. sci. école norm. sup., 7, 181-202, (1974) · Zbl 0307.14008
[6] Bourbaki, N., Elements of mathematics, general topology, part 2, (1966), Hermann, English translation Addison-Wesley, Reading, Mass · Zbl 0145.19302
[7] Bousfield, A.K.; Kan, D.M., Homotopy limits, completions and localizations, () · Zbl 0259.55004
[8] Breen, L., Extensions du groupe additif, Publ. math. IHES, No. 48, 39-126, (1978) · Zbl 0404.14018
[9] Brown, K., Abstract homotopy theory and generalized sheaf cohomology, Trans. amer. math. soc., 186, 419-458, (1974) · Zbl 0245.55007
[10] Brown, K.S.; Gersten, S.M., Algebraic K-theory as generalised cohomology, (), 266-292
[11] \scP. Deligne, Expose XVIII of [32].
[12] \scP. Deligne, Théorie de Hodge, II, Publ. Math. IHES No. 40.
[13] Dold, A.; Puppe, D., Homologie nicht-additiver functoren anwendungen, Ann. inst. Fourier, 11, 201-312, (1961) · Zbl 0098.36005
[14] Douady, A.; Verdier, J.L., Seminaire douady-verdier (geometry analytique), ()
[15] Dyer, E., Cohomology theories, (1969), Benjamin Berlin · Zbl 0182.57002
[16] Eilenberg, S.; Steenrod, N.E., Foundations of algebraic topology, (1952), Princeton Univ. Press New York · Zbl 0047.41402
[17] Fulton, W., Rational equivalence on singular varieties, Publ. math. IHES, No. 45, 147-167, (1975) · Zbl 0332.14002
[18] Gersten, S.M., Higher K-theory of rings, (), 3-42 · Zbl 0285.18010
[19] Gersten, S.M., Some exact sequences in the higher K-theory of rings, (), 211-243 · Zbl 0289.18011
[20] Grayson, D., Higher algebraic K-theory, II (after D. Quillen), (), 217-240
[21] Grothendieck, A., Classes de Chern et représentations linéaires des groupes discrets, () · Zbl 0198.26101
[22] Grothendieck, A., Sur quelques points d’algèbre homologique, Tôhoku math. J., 9, 119-221, (1975) · Zbl 0118.26104
[23] Grothendieck, A., La théorie des classes de Chern, Bull. soc. math. France, 86, 137-154, (1958) · Zbl 0091.33201
[24] Hartshorne, R., On the de Rham cohomology of algebraic varieties, Publ. math. IHES, 45, 5-99, (1976) · Zbl 0326.14004
[25] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of math, 79, 109-326, (1964) · Zbl 0122.38603
[26] Hironaka, H., Triangulations of algebraic sets, (), 165-184
[27] Iversen, B., Local Chern classes, Ann. sci. école norm. sup., 9, 155-169, (1976) · Zbl 0328.14006
[28] Loday, J.L., K-théorie et représentations de groupes, Ann. sci. école norm. sup., 9, 309-377, (1976) · Zbl 0362.18014
[29] May, J.P., Simplicial objects in algebraic topology, (1967), Van Nostrand Paris/Amsterdam · Zbl 0165.26004
[30] Quillen, Q., Homotopical algebra, () · Zbl 0168.20903
[31] Quillen, D., Higher algebraic K-theory, I, () · Zbl 0292.18004
[32] Grothendieck, A., Théorie des topos et cohomologie étale des schémas, 2,, ()
[33] Grothendieck, A., Cohomologie l-adique et fonctions L, ()
[34] Grothendieck, A., Théorie des intersections et théorème de Riemann-Roch, () · Zbl 0229.14008
[35] Soulé, C., K-theorie des anneaux d’entiers du corps de nombres et cohomologie étale, Invent. math., 55, 251-295, (1979) · Zbl 0437.12008
[36] Verdier, J.L., Dualité dans la cohomologie des espaces locally compacts, Séminaire bourbaki, No. 300, (1965), 1966
[37] Wagoner, J.B., Stability for the homology of the general linear group of a local ring, Topology, 15, 417-423, (1976) · Zbl 0362.18016
[38] Waldhausen, F., Algebraic K-theory of generalised free products, Ann. of math., 108, 135-256, (1978)
[39] \scJ. L. Loday, Homotopie des espaces de concordances [D’après F. Waldhausen], Séminaire Bourbaki, No. 516.
[40] Switzer, R.M., Algebraic topology — homology and homotopy, (1975), Springer-Verlag Berlin · Zbl 0305.55001
[41] Douady, A., ()
[42] Grayson, D., The K-theory of hereditary categories, J. pure appl. algebra, 11, 67-74, (1977) · Zbl 0372.18004
[43] Gillet, H., The applications of K-theory to intersection theory, () · Zbl 0596.14003
[44] Grayson, D., Products in K-theory and intersecting algebraic cycles, Invent. math., 47, 71-84, (1978) · Zbl 0394.14004
[45] Kan, D.M., On c.s.s. complexes, Amer. J. math., 79, 449-476, (1957) · Zbl 0078.36901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.