Jakobsen, Hans Plesner The last possible place of unitarity for certain highest weight modules. (English) Zbl 0478.22007 Math. Ann. 256, 439-447 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 22 Documents MSC: 22E46 Semisimple Lie groups and their representations 22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) 17B35 Universal enveloping (super)algebras 32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects) Keywords:holomorphically induced representations; Hermitian symmetric spaces; simple Lie algebra; Cartan decomposition; finite-dimensional irreducible module; last possible place; Kashiwara-Vergne conjecture; unitarity; highest weight modules Citations:Zbl 0466.22016; Zbl 0283.17001 PDF BibTeX XML Cite \textit{H. P. Jakobsen}, Math. Ann. 256, 439--447 (1981; Zbl 0478.22007) Full Text: DOI EuDML OpenURL References: [1] Dixmier, J.: Algebrès enveloppantes. Paris: Gauthier-Villars 1972 · Zbl 0235.17008 [2] Enright, T.J., Parthasarathy, R.: A proof of a conjecture of Kashiwara and Vergne. Preprint, 1980 · Zbl 0492.22012 [3] Humphreys, J.E.: Introduction to Lie algebras and representation theory Berlin, Heidelberg, New York: Springer 1972 · Zbl 0254.17004 [4] Jakobsen, H.P., Vergne, M.: Restrictions and expansions of holomorphic representations. J. Functional Analysis34, 29-53 (1979) · Zbl 0433.22011 [5] Jakobsen, H.P.: On singular holomorphic representations. Invent Math.62, 67-78 (1980) · Zbl 0466.22016 [6] Kashiwara, M., Vergne, M.: On the Segal-Shale-Weil repiesentation and harmonic polyncmials. Invent. Math.44, 1-47 (1978) · Zbl 0375.22009 [7] Rossi, H., Vergne, M.: Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math.136, 1-59 (1976) · Zbl 0356.32020 [8] Shapovalov, N.N.: On a bilinar form on the universal enveloping algebra of a complex semi-simple Lie algebra. Functional Analysis Appl.6, 307-312 (1972) · Zbl 0283.17001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.