×

On the application of integral manifolds to Hopf bifurcation. (English) Zbl 0478.34038


MSC:

34C45 Invariant manifolds for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Collected Papers. Moscow 1956.
[2] et al., Theory of Bifuractions of Dynamic Systems on a Plane. John Wiley & Sons, New York 1970.
[3] Banks, Lectures Notes in Biomathematics 6 (1975)
[4] & , Qualitative Theory of Ordinary Differential Equations. W. A. Benjamin, Inc., New York 1969.
[5] Chow, J. Diff. Equs. 26 pp 112– (1977)
[6] & , The Hopf Bifurcation Theorem. Univ. of Wisconsin. Technical Summary Report 1604, 1976.
[7] Hopf, Ber. Sächs. Akad. Wiss., Math.-Phys. Klasse 94 pp 1– (1942)
[8] Hsü, J. Math. Anal. Appl. 55 pp 61– (1976)
[9] Bifurcation et Stabilité. Univ. Paris XI, U.E.R. Mathématique, No 31 (1973).
[10] Kelley, J. Diff. Equs. 3 pp 546– (1967)
[11] Knobloch, Abh. AdW der DDR 3 pp 413– (1977)
[12] & , The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences, Vol. 19. New York 1976.
[13] Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 1, Paris 1892.
[14] Biochemical System Analysis. Reading 1976.
[15] Nichtlinearer Differnetialgleichungssysteme als mathematische Modelle neurophysiologischer Vorgänge. Dissertation. Humboldt-Universität Berlin 1967.
[16] Schneider, Math. Nachr. 69 pp 191– (1975)
[17] Über die Anwendung der Mittelungsmethode zur Untersuchung der Abzweigung einer periodischen Lösung von einem singulären Punkt. In ”Untersuchungen zur asymptotischen Theorie nichtlinearer Differentialgleichungen”. Schriftenreihe des Zentralinstitutus für Mathematik und Mechanik, Heft 26, 57–64 (1978).
[18] Schneider, ZAMM 60 pp 19– (1980)
[19] Some Mathematical Questions in Biology VII. Lectures on Mathematics in the Life Sciences, Vol. 8, AMS, Providence 1976.
[20] Tyson, Lecture Notes in Biomathematics 10 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.