Benguria, Rafael; Brézis, Haïm; Lieb, Elliott H. The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. (English) Zbl 0478.49035 Commun. Math. Phys. 79, 167-180 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 191 Documents MSC: 49S05 Variational principles of physics 81V35 Nuclear physics 81V55 Molecular physics Keywords:Thomas-Fermi-von Weizsäcker model of atoms; energy functional; existence of binding for two very dissimilar atoms × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Lieb, E. H., Simon, B.: Adv. Math.23, 22–116 (1977) · Zbl 0938.81568 · doi:10.1016/0001-8708(77)90108-6 [2] von Weizsäcker, C. F.: Z. Phys.96, 431–458 (1935) · doi:10.1007/BF01337700 [3] Kompaneets, A. S., Pavloskii, E. S.: Sov. Phys. JETP4, 328–336 (1957) [4] Benguria, R.: The von Weizsäcker and exchange corrections in the Thomas-Fermi theory. Princeton University Thesis: June 1979 (unpublished) [5] Balàzs, N. L.: Phys. Rev.156, 42–47 (1967) · doi:10.1103/PhysRev.156.42 [6] Gombás, P.: Acta Phys. Hung.9, 461–469 (1959) · doi:10.1007/BF03157265 [7] Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Montreal: Presses de l’Univ. 1965 · Zbl 0151.15401 [8] Bers, L., Schechter, M.: Elliptic equations in Partial Differential Equations. New York: Interscience pp. 131–299. 1964 · Zbl 0128.09404 [9] Trudinger, N.: Ann. Scuola Norm. Sup. Pisa27, 265–308 (1973) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.