×

zbMATH — the first resource for mathematics

Subanalytic sets in the calculus of variation. (English) Zbl 0478.58010

MSC:
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
32B20 Semi-analytic sets, subanalytic sets, and generalizations
76N15 Gas dynamics (general theory)
53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Buchner, M. A., Simplicial structure of the real analytic cut locus.Proc. Amer. Math. Soc., 64 (1977), 118–121. · Zbl 0373.53020
[2] Frisch, J., Points de platitude d’un morphisme d’espace analytic complexes.Invent. Math., 4 (1967), 118–138. · Zbl 0167.06803
[3] Gabrielov, A. M., Formal relations between analytic functions.Izv. Akad. Nauk SSSR, 37 (1973), 1056–1090 (Russian). English translationAmer. Math. Soc. Transl., 7 (1973), 1056–1088.
[4] Hardt, R. M., Stratification of real analytic mappings and images.Invent. Math., 28 (1975), 193–208. · Zbl 0298.32003
[5] Hironaka, H., Subanalytic sets.Number theory, algebraic geometry and commutative algebra, in honor of Y. Akizuki. Kinokuniya, Tokyo, 1973.
[6] Hironaka, H., Triangulation of algebraic sets.Algebraic geometry. Proc. Symp. Pure Mathematics 29. Arcata, 1974.
[7] Kobayashi, S. &Nomizu, K.,Foundations of differential geometry (I & II). Wiley-Interscience Publ., New York, 1962. · Zbl 0119.37502
[8] Lojasiewicz, S., Ensemble semi-analytiques.Lecture notes at I.H.E.S., Bures-sur-Yvettes; Reproduit No. A66.765, Ecole Polytechnique, Paris, 1965.
[9] –, Triangulation of semi-analytic sets.Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., 18 (1964), 449–474. · Zbl 0128.17101
[10] Malgrange, B., Frobenius avec singularités, 2. Le cas général.Invent. Math., 39 (1977), 67–89. · Zbl 0375.32012
[11] Seidenberg, A., A new decision method for elementary algebra.Ann. of Math., 60 (1954), 365–374. · Zbl 0056.01804
[12] Sussman, H. J., Analytic stratifications and control theory.Proc. Int. Congr. of Mathematicians. Helsinki, 1978, 865–871.
[13] Tarski, R.,A decision method for elementary algebra and geometry. Berkely note, 1951. · Zbl 0044.25102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.