×

zbMATH — the first resource for mathematics

A generalization of regula falsi. (English) Zbl 0478.65039

MSC:
65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Helfrich, H.P.: Ein modifiziertes Newtonsches Verfahren. Funktionalanalytische Methoden d. numer. Math., ISNM 12, S. 61-70. Basel: Birkhäuser 1969 · Zbl 0211.46901
[2] Hofmann, W.: Konvergenzsätze für Regula-Falsi-Verfahren. Arch. Rational Mech. Anal.44, 296-309 (1972) · Zbl 0236.65037
[3] Laasonen, P.: Ein überquadratisch konvergenter iterativer Algorithmus. Ann. Acad. Sci. Fenn., Ser. A, Mathematica450, 1-10 (1969) · Zbl 0193.11704
[4] Potra, F.-A.: On a modified secant method. L’Analyse numérique et la théorie de l’approximation8, 203-214 (1979) · Zbl 0445.65055
[5] Potra, F.-A.: An application of the induction method of V. Pták to the study of Regula Falsi. Preprint Increst11 (1979)
[6] Potra, F.-A., Pták, V.: Nondiscrete induction and Laasonen’s method. Preprint Increst12 (1979)
[7] Pták, V.: Deux théorèmes de factorisation. C. R. Acad. Sci. Paris278, 1091-1094 (1974) · Zbl 0277.46047
[8] Pták, V.: A theorem of the closed graph type. Manuscripta Math.13, 109-130 (1974) · Zbl 0286.46008
[9] Pták, V.: Nondiscrete mathematical induction and iterative existence proofs. Linear Algebra and Appl.13, 223-236 (1979) · Zbl 0323.46005
[10] Pták, V.: Nondiscrete mathematical induction. In: General topology and its relations to modern analysis and algebra IV. Lecture Notes in Mathematics Vol. 609 Berlin-Heidelberg-New York: Springer 1977
[11] Sergeev, A.S.: O metode chord. Sibirsk. Mat. Z.2, 282-289 (1961)
[12] Schmidt, J.W.: Eine Übertragung der Regula Falsi auf Gleichungen in Banachraum I, II. Z. Angew. Math. Mech.43, 1-8, 97-110 (1963) · Zbl 0115.34002
[13] Schmidt, J.W., Schwetlick, H.: Ableitungsfreie Verfahren mit höherer Konvergenzgeschwindigkeit. Computing3, 215-226 (1968) · Zbl 0165.17305
[14] Schröder, J.: Nichtlineare Majoranten beim Verfahren der schrittweisen Näherung. Arch. Math. (Basel)7, 471-484 (1956) · Zbl 0080.10605
[15] Ulm, S.: Printzip majorant i metod chord. IAN ESSR, Ser Fiz-matem I Tehn.3, 217-227 (1964)
[16] Ulm, S.: Ob obobscennych razdelennych raznostjach, I, II. IAN ESSR, Ser Fiz-Matem I Tehn.16, 13-26, 146-156 (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.