On the solution of a generalized system of von Kármán equations. (English) Zbl 0478.73032


74K20 Plates
35J60 Nonlinear elliptic equations
74B20 Nonlinear elasticity
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: EuDML


[1] Ю.Р. Лепик: Равновесие гибких упруго-пластических пластинок при больших прогибах. Инжинерный сборник, том XX, 1956, 37-51. · Zbl 0995.90522
[2] Н. Ф. Ершов: Об упруго-пластическом изгибе пластинок при больших прогибах. Строительная механика и расчет сооружений. Н.-З, 1962. · Zbl 1005.68507
[3] O. John J. Nečas: On the solvability of von Kármán equations. Aplikace matematiky 20 (1975), 48-62, · Zbl 0309.35064
[4] I. Hlaváček J. Naumann: Inhomogeneous boundary value problems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253-269.
[5] J. Franců: On Signorini problem for von Kármán equations (The case of angular domain). Aplikace matematiky 24 (1979), 355 - 371. · Zbl 0479.73041
[6] G. H. Knightly: An existence theorem for the von Kármán equations. Arch. Rat. Mech. Anal., (1967), 233-242. · Zbl 0162.56303
[7] И. В. Скрыпник: Нелинейные еллщтгические уравнения высшего порядка. ,Наукова думка”, Киев 1973. · Zbl 1131.90321
[8] R. Kodnár: Non-linear problems of the orthogonal anisotropic shallow shells. Proceedings of summer school ”Theory of nonlinear operators”. Abhandlungen der Akademie der Wissenschaften der DDR. N-6, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.