zbMATH — the first resource for mathematics

Liquid drops in a viscous fluid under the influence of gravity and surface tension. (English) Zbl 0478.76118

76T99 Multiphase and multicomponent flows
76D99 Incompressible viscous fluids
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI EuDML
[1] BABENKO, K.I.: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid, Math. USSR Sbornik20,(1973) 1-25 · Zbl 0285.76009 · doi:10.1070/SM1973v020n01ABEH001823
[2] BEMELMANS, J.: Gleichgewichtsfiguren zäher Flüssigkeiten unter dem Einfluß von Oberflächen-spannung, to appear in Analysis
[3] FINN, R.: On the Exterior Stationary Problem for the Navier-Stokes Equations, and Associated Perturbation Problems, Arch. Rat. Mech. Analysis19, (1965) 363-406 · Zbl 0149.44606 · doi:10.1007/BF00253485
[4] FUNK, P.: Variationsrechnung und ihre Anwendung in Physik und Technik, Berlin-Göttingen-Heidelberg 1962 · Zbl 0119.09101
[5] GIAQUINTA, M. - MODICA, G.: Nonlinear Systems of the Type of the Stationary Navier-Stokes System, to appear in J. Reine Angew. Math. · Zbl 0492.35018
[6] LICHTENSTEIN, L.: Über einige Hilfssätze der Potentialtheorie, Math. Z.23,(1925) 72-88 · JFM 51.0357.02 · doi:10.1007/BF01506222
[7] McDONALD, J.E.: The Shape of Raindrops, Sci. Am. 2/1954
[8] NEWTON, I.: Philosphiae Naturalis Principia Mathematica, London 1687
[9] WEINBERGER, H.F.: Variational properties of steady fall in Stokes flow, J. Fluid Mech.52, (1972) 321-344 · Zbl 0245.76023 · doi:10.1017/S0022112072001442
[10] WEINBERGER, H.F.: On the steady fall of a body in a Navier-Stokes fluid, Proc. Symp. Pure Mathem.23, (1973) 421-440
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.