×

Integral equations with non integrable kernels. (English) Zbl 0479.65060


MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35C15 Integral representations of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] BONNEMAY, P.,Equations intégrales pour l’élasticité plane, Thèse de 3ème cycle, Université de Paris VI, 1979.
[2] HAMDI, M.A., Une formulation variationnelle par équations pour la résolution de l’équation de Helmholtz avec des conditions aux limites mixtes, Note au C.R.A.S., Paris, Série II, T. 292 (1981). · Zbl 0479.76088
[3] HA DUONG, T.,A finite element method for the double-layer potential solutions of the Neumann’s problem, Math. Meth. in the Appl. Sci.,2 (1980), 191–208. · Zbl 0437.65083
[4] LIONS, J.L., MAGENES, E.,Problèmes aux limites non homogènes et Applications, T.1, Dunod, Paris, 1968. · Zbl 0165.10801
[5] NEDELEC, J.C.,Résolution par potentiel de double couche du problème de Neumann extérieur, Note au C.R.A.S., Paris, Série A, T. 286 (1978), 103–106. · Zbl 0375.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.