Francu, Jan On Signorini problem for von Kármán equations. The case of angular domain. (English) Zbl 0479.73041 Apl. Mat. 24, 355-371 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Documents MSC: 74K20 Plates 74S30 Other numerical methods in solid mechanics (MSC2010) 35J60 Nonlinear elliptic equations 74A55 Theories of friction (tribology) 74M15 Contact in solid mechanics 49J40 Variational inequalities 47H05 Monotone operators and generalizations 35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions) Keywords:first and second boundary value problems; at least one W2,2-solution; polar form has no non-trivial kernel; inhomogeneities fulfil certain sign condition; pseudomonotone semicoercive variational inequalities Citations:Zbl 0387.35030 PDF BibTeX XML Cite \textit{J. Francu}, Apl. Mat. 24, 355--371 (1979; Zbl 0479.73041) Full Text: EuDML OpenURL References: [1] Hlaváček I., Naumann J.: Inhomogeneous boundary value problems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253 - 269. [2] Jakovlev G. N.: Boundary properties of functions of class \(W_p^1\) on domains with angular points. (Russian). DANSSSR, 140 (1961), 73-76. [3] John O.: On Signorini problem for von Kármán equations. Aplikace matematiky 22 (1977), 52-68. · Zbl 0387.35030 [4] John O., Nečas J.: On the solvability of von Kármán equations. Aplikace matematiky 20 (1975), 48-62. · Zbl 0309.35064 [5] Knightly G. H.: An existence theorem for the von Kármán equations. Arch. Rat. Mech. Anal., 27 (1967), 233-242. · Zbl 0162.56303 [6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. · Zbl 1225.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.