zbMATH — the first resource for mathematics

Optimal scaling of balls and polyhedra. (English) Zbl 0479.90064

90C20 Quadratic programming
52Bxx Polytopes and polyhedra
90C05 Linear programming
90C25 Convex programming
Full Text: DOI
[1] S.W. Director and G.D. Hachtel, ”The simplicial approximation approach to design centering”,IEEE Transactions on Circuits and Systems 24 (1977) 363–372. · Zbl 0402.94045 · doi:10.1109/TCS.1977.1084353
[2] B.C. Eaves and R.M. Freund, ”Inscribing and circumscribing convex polyhedra”, Technical Report (1979), Department of Operations Research, Stanford University.
[3] D.J. Elzinga and D.W. Hearn, ”The minimum covering sphere problem”,Management Science 19 (1972) 96–140. · Zbl 0242.90061 · doi:10.1287/mnsc.19.1.96
[4] D. Gale, ”Solution of spherical inequalities”, unpublished communication.
[5] L.G. Khachiyan, ”A polynomial algorithm in linear programming”,Doklady Akademii Nauk SSSR 244(5) (1979) 1093–1096 [English translation,Soviet Mathematics Doklady 20(1) (1979) 191–194]. · Zbl 0414.90086
[6] M.K. Kozlov, S.P. Tarasov and L.G. Khachiyan, ”Polynomial solvability of convex quadratic programming”,Doklady Adademii Nauk SSSR 248(5) (1979) [English translation,Soviet Mathematics Doklady 20(5) (1979)]. · Zbl 0434.90071
[7] H.W. Kuhn, ”Nonlinear programming: a historical view”,Nonlinear Programming–SIAM-AMS Proceedings IX (1976) 1–26. · Zbl 0344.90029
[8] T.H. Mattheiss and D.S. Rubin, ”A survey and comparison of methods for finding all vertices of convex polyhedral sets”,Mathematics of Operations Research 5 (1980) 186–196. · Zbl 0442.90050 · doi:10.1287/moor.5.2.167
[9] R.P. van der Vet, ”Flexible solutions to systems of linear inequalities”,European Journal of Operations Research 1 (1977) 247–254. · Zbl 0366.90088 · doi:10.1016/0377-2217(77)90094-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.