zbMATH — the first resource for mathematics

A bundle type approach to the unconstrained minimization of convex nonsmooth functions. (English) Zbl 0479.90066

90C25 Convex programming
65K05 Numerical mathematical programming methods
Full Text: DOI
[1] D.P. Bertsekas and S.K. Mitter, ”A descent numerical method for optimization problems with nondifferentiable cost functionals”,SIAM Journal on Control 11 (1973) 637–652. · Zbl 0266.49023 · doi:10.1137/0311049
[2] F.H. Clarke, ”Generalized gradients and applications”,Transactions of the American Mathematical Society 205 (1975) 247–262. · Zbl 0307.26012 · doi:10.1090/S0002-9947-1975-0367131-6
[3] R. Fletcher and G.A. Watson, ”First and second order conditions for a class of nondifferentiable optimization problems”,Numerical analysis report 28, University of Dundee (1978).
[4] C. Lemarechal, ”An extension of Davidon methods to nondifferentiable problems”, in: M.L. Balinski and P. Wolfe, eds.,Nondifferentiable optimization, Mathematical Programming Study 3 (North-Holland, Amsterdam, 1975) pp. 95–109.
[5] C. Lemarechal, ”Optimisation non différentiable: Méthodes de faisceaux”, inProceedings of Third International Symposium on Computing Methods in Applied Science and Engineering (IRIA, Paris, 1977).
[6] C. Lemarechal, ”Bundle methods in nonsmooth optimization”, in: C. Lemarechal and R. Mifflin, eds.,Nonsmooth optimization, IIASA Proceedings Series 3 (Pergamon Press, Oxford, 1977) pp. 79–102.
[7] C. Lemarechal, ”A set of nonsmooth optimizations tests problems”, in: C. Lemarechal and R. Mifflin, eds.,Nonsmooth optimization, IIASA Proceedings Series 3 (Pergamon Press, Oxford, 1977) pp. 151–165.
[8] C. Lemarechal, Private Communication, March 1978.
[9] R. Mifflin, ”Semismooth and semiconvex functions in constrained optimization”, RR-76-21, International Institute for Applied Systems Analysis, Laxenburg, Austria; andSIAM Journal on Control and Optimization 15 (6) (1976) 959–972. · Zbl 0376.90081 · doi:10.1137/0315061
[10] R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[11] P. Wolfe, ”A method of conjugate subgradients for minimizing nondifferentiable functions”, in: M.L. Balinski and P. Wolfe, eds., Nondifferentiable optimization,Mathematical Programming Study 3 (North-Holland, Amsterdam, 1975) pp. 145–173. · Zbl 0369.90093
[12] R.S. Womersley, ”Uses of minimax models for nondifferentiable optimization”, Tenth International Symposium on Mathematical Programming, Montreal, August 27–31 (1979).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.