Benson, H. P. On a domination property for vector maximization with respect to cones. (English) Zbl 0479.90075 J. Optimization Theory Appl. 39, 125-132 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 14 Documents MSC: 90C31 Sensitivity, stability, parametric optimization Keywords:maximization with respect to cones; domination property; efficient points; proper efficiency; nondominated points; sufficient domination condition; vector optimization × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Stadler, W.,A Survey of Multicriteria Optimization or the Vector Maximum Problem, Part 1: 1776-1960, Journal of Optimization Theory and Applications, Vol. 29, pp. 1-52, 1979. · Zbl 0388.90001 · doi:10.1007/BF00932634 [2] Kuhn, H. W., andTucker, A. W.,Nonlinear Programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Edited by J. Neyman, University of California Press, Berkeley, California, 1950. [3] Geoffrion, A. M.,Proper Efficiency and the Theory of Vector Maximization, Journal of Mathematical Analysis and Applications, Vol. 22, pp. 618-630, 1968. · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1 [4] Philip, J.,Algorithms for the Vector Maximization Problem, Mathematical Programming, Vol. 2, pp. 207-229, 1972. · Zbl 0288.90052 · doi:10.1007/BF01584543 [5] Evans, J. P., andSteuer, R. E.,A Revised Simplex Method for Linear Multiple Objective Programs, Mathematical Programming, Vol. 5, pp. 54-72, 1973. · Zbl 0281.90045 · doi:10.1007/BF01580111 [6] Zeleny, M.,Linear Multiobjective Programming, Springer-Verlag, Berlin, Germany, 1974. · Zbl 0325.90033 [7] Yu, P. L.,Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, Journal of Optimization Theory and Applications, Vol. 14, pp. 319-377, 1974. · Zbl 0268.90057 · doi:10.1007/BF00932614 [8] Yu, P. L., andZeleny, M.,The Set of all Nondominated Solutions in Linear Cases and a Multicriteria Simplex Method, Journal of Mathematical Analysis and Applications, Vol. 49, pp. 430-468, 1975. · Zbl 0313.65047 · doi:10.1016/0022-247X(75)90189-4 [9] Borwein, J.,Proper Efficient Points for Maximizations with Respect to Cones, SIAM Journal on Control and Optimization, Vol. 15, pp. 57-63, 1977. · Zbl 0369.90096 · doi:10.1137/0315004 [10] Naccache, P. H.,Connectedness of the Set of Nondominated Outcomes in Multicriteria Optimization, Journal of Optimization Theory and Applications, Vol. 25, pp. 459-467, 1978. · Zbl 0363.90108 · doi:10.1007/BF00932907 [11] Benson, H. P.,An Improved Definition of Proper Efficiency for Vector Maximization with Respect to Cones, Journal of Mathematical Analysis and Applications, Vol. 71, pp. 232-241, 1979. · Zbl 0418.90081 · doi:10.1016/0022-247X(79)90226-9 [12] Bitran, G. R., andMagnanti, T. L.,The Structure of Admissible Points with Respect to Cone Dominance, Journal of Optimization Theory and Applications, Vol. 29, pp. 573-614, 1979. · Zbl 0389.52021 · doi:10.1007/BF00934453 [13] Henig, M. I.,Proper Efficiency with Respect to Cones, Journal of Optimization Theory and Applications, Vol. 36, pp. 387-407, 1982. · Zbl 0452.90073 · doi:10.1007/BF00934353 [14] Bragard, L., andVangeld?re, J.,Points Efficaces en Programmation ? Objectifs Multiples, Bulletin de la Soci?t? Royale des Sciences de Li?ge, Vol. 46, pp. 27-41, 1977. [15] Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.18401 [16] Benson, H. P.,Efficiency and Proper Efficiency in Vector Maximization with Respect to Cones, Journal of Mathematical Analysis and Applications (to appear). · Zbl 0519.90080 [17] Isermann, H.,Proper Efficiency and the Linear Vector Maximum Problem, Operations Research, Vol. 15, pp. 189-191, 1974. · Zbl 0274.90024 · doi:10.1287/opre.22.1.189 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.