Dolezal, Jaroslav; Mohler, Ronald R. On discrete control problems having a minmax type objective functional. (English) Zbl 0481.49018 Kybernetika 17, 549-554 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 49K35 Optimality conditions for minimax problems 49M37 Numerical methods based on nonlinear programming 93C55 Discrete-time control/observation systems 90C30 Nonlinear programming Keywords:minmax problems; discrete systems; necessary optimality conditions PDF BibTeX XML Cite \textit{J. Dolezal} and \textit{R. R. Mohler}, Kybernetika 17, 549--554 (1981; Zbl 0481.49018) Full Text: EuDML References: [1] W. E. Schmitendorf: Necessary conditions and sufficient conditions for static minmax problems. J. Math. Anal. Appl. 57 (1977), 3, 683-693. · Zbl 0363.90103 [2] W. E. Schmitendorf: A simple derivation of necessary conditions for static minmax problems. J. Math. Anal. Appl. 70 (1979), 2, 486-489. · Zbl 0435.49029 [3] J. Doležal: On necessary conditions for static minmax problems with constraints. J. Math. Anal. Appl. To be published · Zbl 0581.49013 [4] J. Doležal: On the problem of necessary conditions for static minmax problems. Problems of Control and Information Theory. To be published. · Zbl 0581.49013 [5] M. D. Canon C. D. Cullum E. Polak: Theory of Optimal Control and Mathematical Programming. McGraw-Hill, New York 1970. · Zbl 0264.49001 [6] V. G. Boltyanskii: Optimal Control of Discrete Systems. Nauka, Moscow 1973. English Trans.. Wiley, New York 1978. [7] J. Doležal: Necessary optimality conditions for discrete systems with state-dependent control region. Kybernetika 11 (1975), 6, 423-450. · Zbl 0321.49014 [8] V. G. Boltyanskii I. S. Cebotaru: Necessary conditions in a minimax problem. Dokl. Akad. Nauk SSSR 213 (1973), 2, 257-260. English Trans.: Soviet Math. Dokl. 14 (1973), 6, 1665-1668. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.