zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Minimal boundaries enclosing a given volume. (English) Zbl 0481.49035

49Q05Minimal surfaces (calculus of variations)
49J20Optimal control problems with PDE (existence)
35R35Free boundary problems for PDE
49Q20Variational problems in a geometric measure-theoretic setting
53A10Minimal surfaces, surfaces with prescribed mean curvature
Full Text: DOI EuDML
[1] ANZELLOTTI, G., GIAQUINTA, M., MASSARI, U., MODICA, G., PEPE, L.: Note sul problema di Plateau. Pisa: Editrice Tecnico Scientifica 1974
[2] CHEN, J.T.: On the existence of capillary free surfaces in the absence of gravity. Doctoral dissertation. Stanford University (1979)
[3] CONCUS, P., FINN, R.: On capillary free surfaces in the absence of gravity. Acta Math.132, 177-198 (1974) · Zbl 0382.76003 · doi:10.1007/BF02392113
[4] DE GIORGI, E., COLOMBINI, F., PICCININI, L.: Frontiere orientate di misura minima e questione collegate. Pisa: Editrice Tecnico Scientifica 1972 · Zbl 0296.49031
[5] FINN, R.: Existence and non existence of capillary surfaces. Manuscripta Math.28, 1-11 (1979) · Zbl 0421.49043 · doi:10.1007/BF01647961
[6] FINN, R., GIUSTI, E.: Non existence and existence of capillary surfaces. Manuscripta Math.28, 13-20 (1979) · Zbl 0466.53027 · doi:10.1007/BF01647962
[7] GERHARDT, C.: On the capillarity problem with constant volume. Ann. Scuola Norm. Sup. Pisa (4)2, 303-320 (1975) · Zbl 0321.76010
[8] GIAQUINTA, M.: Regolarità delle superfici BV(?) con curvatura media assegnata. Boll. U.M.I.8, 567-578 (1973) · Zbl 0274.35028
[9] GIAQUINTA, M.: On the Dirichlet problem for surfaces of prescribed mean curvature. Manuscripta Math.12, 73-86 (1974) · Zbl 0276.35038 · doi:10.1007/BF01166235
[10] GIUSTI, E.: Generalized solutions for the mean curvature equation. To appear · Zbl 0461.49024
[11] GIUSTI, E.: The equilibrium configuration of liquid drops. To appear in J. für Reine und Angew. Math. · Zbl 0438.76078
[12] GONZALEZ, E., MASSARI, U., TAMANINI, I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint. To appear · Zbl 0486.49024
[13] MASSARI, U.: Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in ?n. Arch. Rat. Mech. Anal.55, 357-382 (1974) · Zbl 0305.49047 · doi:10.1007/BF00250439
[14] MASSARI, U., PEPE, L.: Successioni convergenti di ipersuperfici di curvatura media assegnata. Rend. Sem. Mat. Univ. Padova53, 53-68 (1975) · Zbl 0358.49020
[15] MIRANDA, M.: Existence and regularity of hypersurfaces of ?n with prescribed mean curvature. Proceedings of Symposia in Pure Mathematics,23 (1973) · Zbl 0274.35022
[16] MIRANDA, M.: Frontiere minimali con ostacoli. Ann. Univ. Ferrara16, 29-37 (1971) · Zbl 0266.49036
[17] SERRIN, J.: The problem of Dirichlet for quasilinear elliptic equations with many independent variables. Phil. Trans. Royal Soc. London264, 413-496 (1969) · Zbl 0181.38003