×

zbMATH — the first resource for mathematics

A mixed finite element method for a weighted elliptic problem. (English) Zbl 0481.65065
MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] 1. P. BOLLEY et J. CAMUS, Quelques résultats sur les espaces de Sobolev avec poids. Publications des Séminaires de Mathématiques, Rennes, 1968-1969. MR361752
[2] 2. F. BREZZI, On the Existence, Uniqueness and Approximation of Saddle-point Problems arising from Lagrangian Multipliers. R.A.I.R.O., R 2, pp. 129-151 (1974). Zbl0338.90047 MR365287 · Zbl 0338.90047
[3] 3. P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods. Arch. Rat. Mech. Anal., vol. 46, 1972, pp. 177-199. Zbl0243.41004 MR336957 · Zbl 0243.41004
[4] 4. P. G. CIARLET, The finite element method for elliptic problems. North Holland, 1978. Zbl0383.65058 MR520174 · Zbl 0383.65058
[5] 5. M.-N. LE ROUX, Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2. R.A.I.R.O., Analyse numérique/Numerical Analysis,vol. l l , n ^\circ l , 1977, pp. 27 à 60. Zbl0382.65055 · Zbl 0382.65055
[6] 6. P. A. RAVIART, J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems. Proceedings of the Symposium on the Mathematical Aspects of the Finite Element Methods. Rome, décembre 1975. Zbl0362.65089 · Zbl 0362.65089
[7] 7. R. TEMAM, Navier-Stokes équations. North Holland, 1979. Zbl0426.35003 MR603444 · Zbl 0426.35003
[8] 8. J. M. THOMAS, Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes. Thesis, Paris 6, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.