×

zbMATH — the first resource for mathematics

A remark on the rate of convergence for a mixed finite element method for second order problems. (English) Zbl 0481.65066

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Girault, V. and Raviart, P.A. 1979. ”Finite Element Approximation of the Navier-Stokes Equations.”. Berlin-Heidelberg-New York: Springer-Verlag. · Zbl 0413.65081 · doi:10.1007/BFb0063447
[2] Johnson C., R.A.I.R.O. Anal. Numér 15 pp 41–
[3] Natterer P., Numer. Math. 25 pp 67– (1975) · Zbl 0331.65073 · doi:10.1007/BF01419529
[4] Nitsche, J.L-convergence of finite element approximation. Conference on Finite Elements. Vol. 2, Rennes. · Zbl 0362.65088
[5] Nitsche J., Bonner Math. Schriften 89 pp 15– (1976)
[6] Nitsche, J.L-convergence of finite element approximations. Proc. of the Symp. on the Math. Aspects of the Finite Element Method. 1975, Rome. pp.261–274. Berlin-Heidelberg-New York: Springer-Verlag.
[7] Raviart, P. A. and Thomas, J. M. Proc. of the Symp. on the Math. Aspects of the Finite Element Method. 1975, Rome. pp.292–315. Berlin-Heidelberg-New York: Springer-Verlag.
[8] Scholz R., R.A.I.R.O. Anal. Numér. 11 pp 209– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.