×

Finite element solution of the unsteady Navier-Stokes equations by a fractional step method. (English) Zbl 0481.76037


MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M99 Basic methods in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Heinrich, J. C.; Marshall, R. S.; Zienkiewicz, O. C., Penalty function solution of coupled convective and conductive heat transfer, (Proc. 1st Internat. Conf. Numer. Meths. in Laminar and Turbulent (1978), Flow, Swansea: Flow, Swansea U.K)
[2] Malkus, D. S.; Hughes, T. J.R., Mixed finite element methods—reduced and selective integration techniques: A unification of concepts, Comput. Meths. Appl. Mech. Engrg., 15, 63-81 (1978) · Zbl 0381.73075
[3] Hughes, T. J.R.; Liu, W. K.; Brooks, A., Finite element analysis of incompressible viscous flows by the penalty function formulation, J. Comput. Phys., 30, 1-60 (1979) · Zbl 0412.76023
[4] Bercovier, M.; Engelman, M., A finite element for the numerical solution of viscous incompressible flows, J. Comput. Phys., 30, 181-201 (1979) · Zbl 0395.76040
[5] Fortin, M.; Thomasset, F., Mixed finite-element methods for incompressible flow problems, J. Comput. Phys., 31, 113-145 (1979) · Zbl 0395.76023
[6] Christie, I.; Griffiths, D. F.; Mitchell, A. R.; Zienkiewicz, O. C., Finite element methods for second order differential equations with significant first derivatives Internat, J. Numer. Meths. Engrg, 10, 1389-1396 (1976) · Zbl 0342.65065
[7] Heinrich, J. C.; Huyakorn, P. S.; Zienkiewicz, O. C.; Mitchell, A. R., An upwind finite element scheme for two-dimensional convective-transport equation Internat, J. Numer. Meths. Engrg., 11, 113-143 (1977) · Zbl 0353.65065
[8] (Hughes, T. J.R., Finite Element Methods for Convection Dominated Flows. Finite Element Methods for Convection Dominated Flows, ADM, Vol. 34 (1979), ASME: ASME New York)
[9] Baker, A. J., A highly stable explicit integration technique for computational continuum mechanics, (Connors, J. J.; Brebbia, C. A., Numerical Methods in Fluid Dynamics (1974), Pentech: Pentech London)
[10] Gresho, P. M.; Lee, R. L.; Stullich, T. W.; Sani, R. L., Solution of the time-dependent Navier-Stokes equations via FEM, (Second Internat. Conf. on Finite Elements in Water Resources. Second Internat. Conf. on Finite Elements in Water Resources, London (1978)) · Zbl 0446.76034
[11] Smith, S. L.; Brebbia, C. A., Improved stability techniques for the solution of Navier-Stokes equations, Appl. Math. Modeling, 1, 226-234 (1977) · Zbl 0362.76002
[12] Temam, R., On the Theory and Numerical Analysis of the Navier-Stokes Equations (1977), North-Holland: North-Holland Amsterdam · Zbl 0383.35057
[13] Tuann, S. Y.; Olson, M. D., Review of computing methods for recirculating flows, J. Comput. Phys., 29, 1-19 (1978) · Zbl 0427.76028
[14] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762 (1968) · Zbl 0198.50103
[15] Batchelor, G. K., An Introduction to Fluid Dynamics (1967), Cambridge University Press: Cambridge University Press London · Zbl 0152.44402
[16] Raviart, P. A., Méthodes d’éléments finis en mécanique des fluides, Cours de l’Ecole d’Eté d’Analyse Numérique (1979)
[17] Chorin, A. J., On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comput., 23, 341-353 (1969) · Zbl 0184.20103
[18] Donea, J.; Giuliani, S.; Morgan, K.; Quartapelle, L., The significance of the chequerboarding in Galerkin finite element solutions of the Navier-Stokes equations Internat, J. Numer. Meths. Engrg., 17, 790-795 (1981) · Zbl 0461.76018
[19] Zienkiewicz, O. C., The Finite Element Method (1977), McGraw-Hill: McGraw-Hill London · Zbl 0435.73072
[20] Gresho, P. M.; Lee, R. L.; Sani, R., Advection-dominated flows with emphasis on the consequences of mass lumping, (Finite Elements in Fluids, Vol. 3 (1978), Wiley: Wiley New York) · Zbl 0442.76067
[21] Donea, J.; Giuliani, S., A simple method to generate high-order accurate convection operators for explicit schemes based on linear finite elements Internat, J. Numer. Meths. Fluids, 1, 63-79 (1981) · Zbl 0461.76068
[22] Donea, J.; Giuliani, S.; Laval, H.; Quartapelle, L., Solution of the unsteady Navier-Stokes equations by a finite-element projection method, (Taylor, C.; Morgan, K., Recent Advances in Numerical Methods in Fluids, Vol. 2 (1981), Pineridge: Pineridge Swansea) · Zbl 0481.76037
[23] Krieg, R. D.; Key, S. W., Transient shell response by numerical time integration Internat, J. Numer. Meths. Engrg., 7, 273-286 (1973)
[24] Donea, J.; Guiliani, S., The computer code CONDIF for transient convective-conductive heat transfer, EUR 6822/I and II EN (1980)
[25] Laval, H., CONVEC, A computer program for transient incompressible fluid flow based on quadratic finite elements, EUR 7427/I and II EN (1981)
[26] Burggraf, O., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24, 113-151 (1966)
[27] Quartapelle, L., Vorticity conditioning in the computation of two-dimensional viscous flows, J. Comput. Phys., 40, 453-477 (1981) · Zbl 0472.76062
[28] Macagno, E.; Hung, T. K., Computational and experimental study of a captive annular eddy, J. Fluid Mech., 28, 43-64 (1967)
[29] Dennis, S. C.R.; Walker, J. D.A., Calculation of the steady flow past a sphere at low and moderate Reynolds numbers, J. Fluid Mech., 48, 771-789 (1971) · Zbl 0266.76023
[30] Kee, R. J.; Landram, S. C.; Miles, J. C., Natural convection of a heat-generating fluid within closed vertical cylinders and spheres, Trans. ASME Ser. C, 55-61 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.