×

Unicité et non unicité du problème de Cauchy pour des opérateurs hyperboliques à characteristiques doubles. (French) Zbl 0482.35052


MSC:

35L15 Initial value problems for second-order hyperbolic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alinhac, S. and Baouendi, M.S. 1978–79. Construction de solutions nulles et singulières pour des opérateurs de types principal. Sēinaire Goulaouic–Scwhartz. 1978–79, Paris. exposē n{\(\deg\)} XXIII, Ecole Polytechnique Paris et article à paraître.
[2] Baouendi M.S., Duke Math. Journal 45 pp 1– (1978) · Zbl 0373.35001 · doi:10.1215/S0012-7094-78-04501-5
[3] Calderóon A.P., Proc. Symp. Fluid Dynamics and Appl. Math. pp 147– (1962)
[4] Choen, P. 1960. The non-uniqueness of the Cauchy problem. O.N.R. Techn. Report 93. 1960. Stanford.
[5] Hörmander L., Linear partial differential operators, (1963) · Zbl 0108.09301 · doi:10.1007/978-3-642-46175-0
[6] Hörmander, L. Non-uniqueness for the Cauchy problem. Lecture Notes in Math. Vol. 459, pp.36–72. springer Verlag. n{\(\deg\)}
[7] Hörmander L., Journal d’ Analyse Math. 32 pp 110– (1977) · Zbl 0367.35054 · doi:10.1007/BF02803578
[8] Matsumoto W., Journ. Math. Kyoto Univ. 15 (3) pp 479– (1975)
[9] Pliš A., Bull. Acad. Pol. Sci. 2 (3) pp 55– (1954)
[10] Pliš A., J.Math. Mech. 9 (3) pp 557– (1960)
[11] Pliš A., Comm. Pure Appl. Math. 14 (3) pp 599– (1961) · Zbl 0163.13103 · doi:10.1002/cpa.3160140331
[12] š A., Proc. Int. Congr. Math. Stockholm 14 (3) pp 397– (1962)
[13] Pliš A., Bull. Acad. Pol. Sci. 11 (3) pp 95– (1963)
[14] Watanabe K., Tôhoku Math. Journ. 23 (3) pp 473– (1963) · Zbl 0237.35032 · doi:10.2748/tmj/1178242595
[15] Withney H., Trans. Am. Math. soc. 36 (3) pp 63– (1934)
[16] Zuily C., St Cast 36 (3) (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.