×

Une formule de traces pour l’opérateur de Schrödinger dans \(R^ 3\). (French) Zbl 0482.35068


MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] P. ALSHOLM et G. SCHMIDT , Spectral and Scattering Theory for Schrödinger Operators (Arch. Rat. Mech. Anal., vol. 40, 1971 , p. 281-311). MR 43 #5352 | Zbl 0226.35076 · Zbl 0226.35076
[2] V. S. BUSLAEV , Scattered Plane waves, Spectral Asymptotics and Trace Formulas in Exterior Problems (Dokl. Akad. Nauk S.S.S.R., vol. 197, 1971 , p. 591-595). MR 43 #3840 | Zbl 0224.47023 · Zbl 0224.47023
[3] M. BERGER , P. GAUDUCHON et E. MAZET , Le spectre d’une variété riemannienne (Lecture Notes in Math., vol. 194, 1971 ). MR 43 #8025 | Zbl 0223.53034 · Zbl 0223.53034
[4] M. S. BIRMAN et M. G. KREIN , On the Theory of wave Operators and Scattering Operators (Dokl. Akad. Nauk S.S.S.R., vol. 144, 1962 , p. 475-478). MR 25 #2447 | Zbl 0196.45004 · Zbl 0196.45004
[5] Y. COLIN DE VERDIÈRE , Spectre du laplacien et longueurs des géodésiques périodiques II (Compositio Mathematica, vol. 27, 1973 , p. 159-184). Numdam | MR 50 #1293 | Zbl 0281.53036 · Zbl 0281.53036
[6] P. FADDEEV et V. ZAKHAROV , KdV Equation : a Completely Integrable Hamiltonian System (Funct. Anal. and Appl. vol. 5, 1971 , p. 280-288). Zbl 0257.35074 · Zbl 0257.35074
[7] V. GLASER , A. MARTIN , H. GROSSE et W. THIRRING , A Family of Optimal Conditions for the Absence of Bound States in a Potential. Studies in Math. Phys., LIEB, SIMON et WIGHTMANN, éd., Princeton, 1976 , p. 169-194. Zbl 0332.31004 · Zbl 0332.31004
[8] A. JENSEN et T. KATO , Asymptotic behaviour of the Scattering Phase for Exterior Domains (Comm. P.D.E., vol. 3, 1978 , p. 1165-1195). MR 80g:35098 | Zbl 0419.35067 · Zbl 0419.35067
[9] H. P. MCKEAN et VAN MOERBECKE , The Spectrum of Hill’s Equation (Invent. Math., vol. 30, 1975 , p. 217-254). MR 53 #936 | Zbl 0319.34024 · Zbl 0319.34024
[10] P. LAX et R. S. PHILLIPS , Scattering Theory for Automorphic Functions (Annals Math. Studies, 1976 , Princeton). MR 58 #27768 | Zbl 0362.10022 · Zbl 0362.10022
[11] P. LAX et R. S. PHILLIPS , The Time Delay Operator and a Related Trace Formula. Topics in Functional Analysis, GOHBERG et M. KAC, ed., Academic Press, 1978 , p. 197-215. MR 80j:47010 | Zbl 0463.47006 · Zbl 0463.47006
[12] E. LIEB et W. THIRRING , Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian... Studies in Math. Phys., LIEB, SIMON et WIGHTMANN, éd., Princeton, 1976 , p. 269-304. Zbl 0342.35044 · Zbl 0342.35044
[13] A. MAJDA et J. RALSTON , An Analogue of Weyl’s Theorem for Unbounded Domains I, II et III (Duke Math. J., vol. 45, p. 183-196 et 513-536 ; vol. 46, 1979 , p. 725-731). Article | Zbl 0408.35069 · Zbl 0408.35069
[14] R. NEWTON , Non Central Potentiels : the Generalized Levinson Theorem and the Structure of the Spectrum (J. Math. Phys., vol. 18, 1977 , p. 1348-1357). MR 56 #4509
[15] M. REED et B. SIMON , Scattering Theory , Academic Press, 1979 . Zbl 0405.47007 · Zbl 0405.47007
[16] B. SIMON , Quantum Mechanics for Hamiltonians defined as Quadratic Forms , Princeton, 1971 . Zbl 0232.47053 · Zbl 0232.47053
[17] B. SIMON , Trace Ideals and their Applications , Cambridge, 1979 . MR 80k:47048 | Zbl 0423.47001 · Zbl 0423.47001
[18] B. SIMON , On the Number of Bound States of the Two-Body Schrödinger Operators. A review. Studies in Math. Phys., LIEB, SIMON et WIGHTMANN, éd., Princeton, 1976 , p. 305-326. Zbl 0349.35022 · Zbl 0349.35022
[19] C. ZEMACH et A. KLEIN , The Born Expansion in non Relativistic Quantum Theory, I (Nuovo Cimento, vol. 10, 1958 , p. 1078-1087). MR 21 #580 | Zbl 0084.44803 · Zbl 0084.44803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.