Karny, Miroslav Recursive parameter estimation of regression model when the interval of possible values is given. (English) Zbl 0482.62019 Kybernetika 18, 37-49 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 62F15 Bayesian inference 62H12 Estimation in multivariate analysis 93E12 Identification in stochastic control theory 93E10 Estimation and detection in stochastic control theory 62J05 Linear regression; mixed models Keywords:a posteriori maximum likelihood estimation; Fletcher-Jackson algorithm; Bayesian identification; recursive least squares Citations:Zbl 0301.90032 PDF BibTeX XML Cite \textit{M. Karny}, Kybernetika 18, 37--49 (1982; Zbl 0482.62019) Full Text: EuDML References: [1] R. Fletcher M. P. Jackson: Minimization of a quadratic function of many variables subject only to lower and upper bounds. J. Inst. Math. Appl. 14 (1976), 159-174. · Zbl 0301.90032 [2] V. Peterka: Bayesian approach to system identification. Trends and Progress in System Identification (P. Eykhoff, IFAC Series for Graduates, Research Workers and Practicing Engineers 1 (1981). · Zbl 0451.93059 [3] V. Peterka: Experience accumulation for decision making in multivariate time series. Problems Control Inform. Theory 7 (1978), 143-159. · Zbl 0396.93045 [4] M. H. De Groot: Optimal Statistical Decisions. McGraw-Hill, New York 1970. [5] M. Kárný: Probabilistic Identification and Self-Reproducing Forms of Distribution Functions. (in Czech). Ph. D. Dissertation, Institute of Information Theory and Automation of the Czechoslovak Academy of Sciences, Prague 1976. [6] L. Ljung: Analysis of vector stochastic algorithms. IEEE Trans. Autom. Control AC-22 (1977), 551-579. · Zbl 0362.93031 [7] G. K. Keľmans A. S. Poznyak A. V. Chernitser: Adaptive locally optimal control. Internat. J. Systems Sci. 12 (1981), 235-254. · Zbl 0464.93052 [8] M. Kárný J. Böhm A. Halousková: Identification and Control of Cold Rolling System. (in Czech). Internal Report o.p. Škoda Válcovny 1980. [9] M. Kárný: Automated structure determination of regression model. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.